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Spherical wave vs. plane wave approximation to the nature of the electromagnetic waves in regard to the 

Doppler shift and aberration is considered.  The first approach is free from the blueshift – redshift transition 

paradox innate for the second one. For spherical electromagnetic waves, in contrast with the plane ones, we 

have to assume that not only the magnitude, but also the direction of the light velocity is the same in any 

inertial frame, which leads to the accepted expression for time dilation. The rest frame of the source of 

electromagnetic waves is unique among all inertial frames (in it the angles of emission and reception 

coincide, and there is no shift in wavelength in all directions). The spherical approximation to 

electromagnetic waves preserves this uniqueness without violating the principle of relativity of the uniform 

motion, while the planar approximation ignores the source completely. Both approximations give the same 

expression of the Lorentz–FitzGerald contraction. Both spherical and planar approaches give the same 

Doppler shift in the directions of the relative motion of the frames, but in the directions with perpendicular 

components there may be significant differences. A geometrical picture of the transformation of  wavefronts 

of spherical electromagnetic waves, which differs from the one according to the Lorentz transformation, is 

suggested.  
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Currently accepted mathematical expressions of the Doppler shift and aberration 

for electromagnetic waves was first derived by A. Einstein using the Lorentz 

transformation and assuming planar character of those waves [1].  

If a source of plane electromagnetic wave is moving with constant velocity   in 

some frame, then the length of the emitted wave in this frame in the direction making angle 

  with the direction of motion of the source (the angle of reception),   , is connected with 

the length of the same wave in the rest frame of the source,   , through the equation:  

 
     

       

     
 (1) 

  
 

 
, where c  is the speed of electromagnetic waves in free space.  

The direction of propagation of the same wave in the rest frame of the source, 

angle   (the angle of emission), is connected with angle  through the equation of 

aberration: 

 
     

      

       
 (2) 

Angle   in the moving frame is seen as angle    from the stationary frame. The 

connection between those angles is: 

                 (3) 

In the rest frame of the source Eq.(1) takes the following form: 

 
     

       

     
 (4) 

Those equations make the frames of the source and observer exactly equivalent.  
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Spherical electromagnetic waves do not fit into the picture of the Lorentz 

transformation. The phase of an electromagnetic wave at any point of space (which is 

closely related with the number of waves passed trough that point) must be an invariant. 

Under the Lorentz transformation the phase of a plane electromagnetic wave is the same in 

any inertial frame and that of a spherical one is not.  

That the plane wave approximation to the electromagnetic waves is controversial, 

we can see from the following blueshift-redshift transition paradox, which one has to live 

with when dealing with those waves.  

It is obvious that blueshift-redshift transition shall happen when the observer 

receives waves that have traveled the shortest distance between the source and observer. In 

any frame moving relative to the source, all waves received by the observer before that 

instant shall be blueshifted and all waves received after that instant shall be redshifted. 

Let us consider this problem in the rest frame of the source, because that frame is the same 

for any observer and the events in it do not depend on the kind of transformation theory.  

The distance traveled by the wave in the rest frame of the source is the shortest 

when the wave is issued at angle   
 

 
 to the line of relative velocity.  The corresponding 

angle of reception  , which is different in different frames, may be found from the 

equation:         , where   is the relative speed of the source and the observer. This 

result is a consequence of the constancy of the speed of light.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Blueshift-redshift transition paradox. A source of plane electromagnetic waves ( ) 

is moving with constant velocity   along the line     to the right. The constancy 

of light speed requires that for the observer in point  , the point of emission of 

electromagnetic waves with no shift in wavelength shall be point     for which 

       
 

 
, and               . Eq.(1), during the derivation of 

which the fact of the constancy of light speed is also used, requires that the point of 

emission for the zero-shift be point  , for which              
       

 
, 

and              
       

 
. 

 

 

According to Eq.(1), plane waves must have blueshift-redshift transition at the 

angle of emission for which      
       

 
, or the angle of reception for which      

       

 
, but that is inconsistent with the above results. 
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The effect of transition from blueshift to redshift and vice versa for a given angle of 

observation by changing only the intensity of the relative velocity of the source and the 

observer, which cannot be accounted for in the framework of the currently accepted theory, 

is considered in [2]. 

Thus, in a non-controversial equation of the Doppler shift,      (as well as      ) 

must be changing sign when passing the angle where       (zero-shift angle), i.e. 

      
 

 
, or, which is the same, the angle of observed blueshift-redshift transition:  

        .  

 

 

 We can get the expression of the Doppler shift for spherical electromagnetic waves 

using some obvious properties of waves.  

It is clear that in any frame all waves (wavelengths) emitted by a source of 

electromagnetic wave in free space are contained between the source and the (outer) 

wavefront; at any instant of time the last wave, or a part of it, has just left the source and 

the wave first emitted has just arrived at the location of the wavefront. In any direction the 

distance between the source and the wavefront of the emitted wave is equal to the sum of 

wavelengths contained between them.   

Let a source of spherical electromagnetic wave,   , be moving with a constant 

velocity      from the origin   along the axis X of a stationary frame (Fig.2).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  The wavefront of a spherical electromagnetic wave emitted by a moving source    

 with the angles of reception and emission:   and   respectively. 

 

 

The total number of waves emitted in the period of time    in the stationary frame, 

 , (which is equal to the number of oscillations within the source of wave), is contained in 

the space between point    and the sphere with centre in   and radius     , which 

represents the wavefront of those waves in the stationary frame. Assuming that the light 

speed is the same in the stationary and moving frames, for some point A of the wavefront 

in the stationary frame we have:   

                                          , (5) 
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where    is the number of oscillations within the source of wave during the interval of 

time   in the rest frame of the source;    is the length of the emitted wave in the same 

frame;    is the length of the wave in direction making         to the direction of 

velocity of the source in the stationary frame (the angle of reception). 

From Eq.(5) 

 
   

                

 
 (6) 

It is sometimes convenient to use the angle          instead of the angle  . 

Angle   is the angle at which, from the point of view of the stationary frame, the ray OA
(or the point A of the wavefront) propagates in the moving frame connected with the 

source. If we assume that the ray OA  propagates through an imaginary moving tube of a 

very small diameter, then angle   is the angle of slope of the tube relative to the direction 

of the source’s motion. We have no reason to distinguish this angle from the angle of 

emission in the rest frame of the source. From       

 
     

    

            
   

So, instead of Eq.(6) we can use the equation: 

 
   

                      

 
  

As it was discussed above, due to the constancy of the speed of electromagnetic 

waves in free space, when      , the angle of emission    
 

 
 .  

Then          , which gives: 

 
   

              

     
  

or 

 
   

                    

     
  

Using vectors we can rewrite the above equations in compact forms:  

 
    

       

      
 (7) 

 
     

     

       
 (8) 

where   is the wavelength in the considered direction of propagation of the 

electromagnetic wave, i.e. in the direction of    . 
At     and       Eqs. (1) and (7) coincide absolutely.   

 

Fig.3  shows a comparative picture of the Doppler shifts for the angles of reception 

  (           ) and emission   (          ) in the cases of spherical (curves 1,3) and 

planar (curves 2,4) electromagnetic waves when the relative velocity is      . 
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 Fig.3 Doppler shift. Dependence of the ratio of the wavelengths of received and emitted 

 waves (
  

  
) on the angles of reception   (           ) and emission   (          ) 

 for the cases of spherical (curves 1, 3) and planar (curves 2, 4) electromagnetic 

 waves  when the relative velocity      . 

 

 

 

 For the spherical electromagnetic waves the transition to the rest frame of the 

source is trivial: we have only to alter the sign before the relative velocity in Eqs. (7) 

and (8): 

 
    

       

      
 (9) 

 
     

     

       
   

Comparing Eqs. (7) and (9) we can assume that vector    
         

 
  (the vector 

connecting the points of emission and reception of a pulse or ray of light at the instant of 

its emission divided by the time of its travel from one end to the other) is the same in the 

moving and stationary frames, i.e. for the spherical electromagnetic waves, the vector of 

the velocity of an electromagnetic wave is an invariant. 

Eq.(8) is the equation of aberration for spherical electromagnetic waves. At the 

instant when a light pulse arrives at the observer, the angle of the slope of the line 

connecting the reception point with the source is angle  ; at the instant when the pulse is 

emitted by the source, that angle is  . For the observer in the rest frame of the source those 

angles coincide, in any other frame they are different.  

For spherical electromagnetic waves, the difference between the angles   and   is 

fundamental: angle   is always the direction of a ray in the frame connected with the 

source (the angle of emission), and   may be a direction in any frame (the angle of 

reception), which makes the rest frame of the source unique. That, of course, does not 

violate the principle of relativity of uniform motion, because we can always single out the 
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rest frame of the source from the other frames (e.g., in that frame, in contrast with any 

other frame, the angles of emission and reception are the same, and there is zero-shift in all 

directions). In other words, we cannot ignore the source in the case of a spherical 

electromagnetic wave. In mathematical language this is tantamount to the statement that 

every sphere has its centre point.  

Fig.4  gives a comparative picture of aberration for spherical and plane waves. 

 

 
 

 

Fig.4 Aberration. Dependence of the angle of reception   on the angle of emission   for 

 spherical (curve 1) and planar (curve 2) electromagnetic waves when the relative 

 velocity      . 

 

 

For the plane electromagnetic waves the angles   and   in Eq.(2)  are equivalent 

ones, which means we are ignoring the source of wave completely and are considering 

only a wave in two equivalent inertial frames. That is why when making transition from 

one frame to the other we have not only to alter the sign before the relative velocity of the 

frames, but also to swap the angles and wavelengths in Eqs.(1) and (2). Thus, under the 

Lorentz transformation the unique character of the rest frame of the source of 

electromagnetic wave gets lost, which, of course, is also a distortion of the physical reality. 

 

 Now let us get the equation of time dilation using as an axiom the constancy of the 

vector of the light velocity c


, instead of the information about the zero shift angle as 

above, in order to show that they mean essentially the same thing. 

 According to Eq.(6), for the case when       ,  we have: 
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 Since 
 

  
 is the ratio of the numbers of wavelengths, which are equal to the numbers 

of internal oscillations of the source of waves, its final expression cannot contain any 

evidence of direction (the “source” may be not emitting anything and the direction of the 

observer’s motion cannot affect those numbers).   

Besides, while both equations are essentially the same (        in one frame is the 

same as         in the other frame), their forms differ in the sign before the relative 

velocity. The principle of relativity of uniform motion requires that not only the essence of 

those equations, but also their forms be the same (otherwise an observer would be at a loss 

which form to use in their frame: in regard to internal oscillations all inertial frames are 

equivalent). Thus, both forms of those equations must give the same result for both 

observers, i.e. when       ,  then                   in both frames, which gives  
 

  
       for the case when                 or when        in Eq.(6).  

As for the other solution:  
 

  
      ,  i.e. when         in Eq.(6), we 

discard it because that would mean that a moving observer would be able to count more 

numbers of waves than emitted by the source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 The wavefront of a spherical electromagnetic wave in the frames of the source and 

 the observer moving relative each other. The origin of the resting frame is in   and 

 the origin of the moving frame is in   . The ratio 
      

    
 gives the expression of the 

 Lorentz–FitzGerald contraction. 

 

 

To get the picture of propagation of the wavefront of a spherical electromagnetic 

wave in moving and resting frames, let us consider a source of spherical electromagnetic 

waves in point    moving from point   to the right with constant velocity   
     

 
 in the 

rest frame of the observer (Fig.5). At the moment of time   in point  , the time in point    

is         . The wavefront of the wave emitted by the source in point   is a sphere 

with the center in point  , and radius           in the rest frame of the observer. In 

the rest frame of the source the wavefront of the same wave is a sphere with the center in 

point    and the radius                  . Because both those spheres are the same, 

but watched from different frames, there has to be one to one correspondence between 

their points. Let line       be a thin and long enough imaginary tube of arbitrary 
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orientation (angle  ), within which the source is contained and which is moving together 

with the source. Propagation of the wave through this tube is watched from both frames. At 

the instant of time   in the frame of the observer, the wavefront propagating through the 

tube arrives at points    and  . At the instant of time    in the frame of the source, the 

wavefront propagating through the same tube arrives at points     and   . That means 

points    and    in the frame of the source are the same points as points    and    

respectively in the frame of the observer. 

It is easy to notice that               
    

         
 , which is the equation of the 

Lorentz–FitzGerald contraction. Not going into details here, that means the results of the 

Michelson-Morley experiment may be interpreted in the terms of spherical waves as well. 

It seems obvious that the picture must be the same when the source is resting and 

the observer moving. 

The Lorentz transformation gives a different picture of the same events. The 

trouble with the Lorentz transformation seems to be that it allows instant measurement 

(instant comparison) of lengths in perpendicular to the relative velocity directions. In the 

directions along the relative velocity, where it is not possible to bring together both ends of 

compared lengths at the same time (i.e. instant comparison of lengths is impossible), planar 

and spherical approaches to electromagnetic waves give the same results. But in other 

directions, where normal component of length is present, they give different results.  There 

are serious reasons to believe that instant measurement of length is not possible in any 

directions, but again, a more detailed discussion of this question lies beyond the scope of 

this paper.  
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