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Abstract

We review firstly why Weyl’s Geometry, within the context of Friedman-
Lemaitre-Robertson-Walker cosmological models, can account for both the
origins and the value of the observed vacuum energy density (dark en-
ergy). The source of dark energy is just the dilaton-like Jordan-Brans-
Dicke scalar field that is required to implement Weyl invariance of the
most simple of all possible actions. A nonvanishing value of the vacuum
energy density of the order of 10−123M4

Planck is derived in agreement
with the experimental observations. Next, a Jordan-Brans-Dicke gravity
model within the context of ordinary Riemannian geometry, yields also
the observed vacuum energy density (cosmological constant) to very high
precision. One finds that the temporal flow of the scalar field φ(t) in
ordinary Riemannian geometry, from t = 0 to t = to, has the same nu-
merical effects (as far as the vacuum energy density is concerned) as if
there were Weyl scalings from the field configuration φ(t), to the constant
field configuration φo, in Weyl geometry. Hence, Weyl scalings in Weyl
geometry can recapture the flow of time which is consistent with Segal’s
Conformal Cosmology, in such a fashion that an expanding universe may
be visualized as Weyl scalings of a static universe. The main novel result
of this work is that one is able to reproduce the observed vacuum energy
density to such a degree of precision 10−123M4

Planck, while still having a
Big-Bang singularity at t = 0 when the vacuum energy density blows up.
This temporal flow of the vacuum energy density, from very high values
in the past, to very small values today, is not a numerical coincidence but
is the signal of an underlying Weyl geometry (conformal invariance) oper-
ating in cosmology, combined with the dynamics of a Brans-Dicke-Jordan
scalar field.

Keywords: Dark Energy, Weyl Geometry, Brans-Dicke-Jordan Gravity, Segal
Conformal Cosmology.
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1 Introduction : Why Weyl Geometry

The problem of dark energy is one of the most challenging problems facing
Cosmology today with a vast numerable proposals for its solution, we refer to
the recent monograph [1] and references therein. In this introductory section we
will review [3] how Weyl’s geometry (and its scaling symmetry) is instrumental
to solve this dark energy riddle. Before starting we must emphasize that our
procedure is quite different than previous proposals [2] to explain dark matter (
instead of dark energy ) in terms of Brans-Dicke gravity. It is not only necessary
to include the Jordan-Brans-Dicke scalar field φ but it is essential to have a
Weyl geometric extension and generalization of Riemannian geometry ( ordinary
gravity ). It will be shown why the scalar φ has a nontrivial energy density
despite having trivial dynamics due entirely to its potential energy density
V (φ = φo) and which is precisely equal to the observed vacuum energy density
of the order of 10−123M4

Planck.
Weyl’s geometry main feature is that the norm of vectors under paral-

lel infinitesimal displacement going from xµ to xµ + dxµ change as follows
δ||V || ∼ ||V ||Aµdxµ where Aµ is the Weyl gauge field of scale calibrations
that behaves as a connection under Weyl transformations :

A′
µ = Aµ − ∂µ Ω(x). gµν → e2Ω gµν . (1)

involving the Weyl scaling parameter Ω(xµ) .
The Weyl covariant derivative operator acting on a tensor T is defined by

DµT = ( ∇µ + ω(T ) Aµ ) T; where ω(T) is the Weyl weight of the tensor
T and the derivative operator ∇µ = ∂µ + Γµ involves a connection Γµ which
is comprised of the ordinary Christoffel symbols plus extra Aµ terms in order
for the metric to obey the condition Dµ(gνρ) = 0. The Weyl weight of the
metric gνρ is 2. The meaning of Dµ(gνρ) = 0 is that the angle formed by two
vectors remains the same under parallel transport despite that their lengths may
change. This also occurs in conformal mappings of the complex plane.

The Weyl covariant derivative acting on a scalar φ of Weyl weight ω(φ) = −1
is defined by

Dµφ = ∂µ φ + ω(φ)Aµ φ = ∂µ φ − Aµ φ. (2)

The Weyl scalar curvature in D dimensions and signature (+,−,−,−....) is

RWeyl = RRiemann − (D − 1)(D − 2)AµAµ + 2(D − 1)∇µAµ. (3)

For a signature of (−,+,+,+, ....) there is a sign change in the second and third
terms due to a sign change of RRiemann.

The Jordan-Brans-Dicke action involving the scalar φ and RWeyl is

S = −
∫

d4x
√
|g| [ φ2 RWeyl ]. (4)

Under Weyl scalings,

RWeyl → e−2Ω RWeyl; φ2 → e−2Ω φ2. (5)
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to compensate for the Weyl scaling ( in 4D ) of the measure
√
|g| → e4Ω

√
|g|

in order to render the action (4) Weyl invariant.
When the Weyl integrability condition is imposed Fµν = ∂µAν − ∂νAµ =

0 ⇒ Aµ = ∂µΩ, the Weyl gauge field Aµ does not have dynamical degrees of
freedom; it is pure gauge and barring global topological obstructions, one can
choose the gauge in eq-(4)

Aµ = 0; φ2
0 =

1
16πGN

= constant. (6)

such that the action (4) reduces to the standard Einstein-Hilbert action of Rie-
mannian geometry

S = − 1
16πGN

∫
d4x

√
|g| [RRiemann(g)]. (7)

The Weyl integrability condition Fµν = 0 means physically that if we parallel
transport a vector under a closed loop, as we come back to the starting point, the
norm of the vector has not changed; i.e, the rate at which a clock ticks does not
change after being transported along a closed loop back to the initial point; and
if we transport a clock from A to B along different paths, the clocks will tick at
the same rate upon arrival at the same point B. This will ensure, for example,
that the observed spectral lines of identical atoms will not change when the
atoms arrive at the laboratory after taking different paths ( histories ) from their
coincident starting point. If Fµν 6= 0 Weyl geometry may be responsible for the
alleged variations of the physical constants in recent Cosmological observations.
A study of the Pioneer anomaly based on Weyl geometry was made by [4]. The
literature is quite extensive on this topic.

Our starting action is

S = SWeyl(gµν , Aµ) + S(φ). (8)

with
SWeyl(gµν , Aµ) = −

∫
d4x

√
|g| φ2 [ RWeyl(gµν , Aµ) ]. (9)

where we define φ2 = (1/16πG). The Newtonian coupling G is spacetime de-
pendent in general and has a Weyl weight equal to 2. The term S(φ) involving
the Jordan-Brans-Dicke scalar φ is

Sφ =
∫

d4x
√
|g| [

1
2
gµν (Dµφ)(Dνφ) − V (φ) ]. (10)

where Dµφ = ∂µφ−Aµφ. The FRW metric is

ds2 = dt2 − a2(t) (
dr2

1− k(r/R0)2
+ r2(dΩ)2). (11a)

where k = 0 for a 3-dim spatially flat region; k = ±1 for regions of positive and
negative constant spatial curvature, respectively. The de Sitter metric belongs
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to a special class of FRW metrics and it admits different forms depending on
the coordinates chosen. The Friedman-Einstein-Weyl equations in the gauge
Aµ = (0, 0, 0, 0), in units of c = 1 are

Gµν = [ Tµν + TBDJ
µν ] φ2 =

1
16πG

. Tµν = − 2√
|g|

δSmatter

δgµν
. (11b)

where the effective stress energy tensor associated with the BDJ scalar field
Φ ≡ φ2 (when the ω parameter is ω = 1

4 ) is given by

TBDJ
µν (φ) = − 1

4φ4
[ (Dµφ2) (Dνφ2) − 1

2
gµν (Dρφ2) (Dρφ

2) ] −

1
φ2

[ (Dµ Dν φ2) − gµν (Dρ Dρ φ2) ] + gµν
V (φ2)
2φ2

. (11c).

the second terms in eq-(11c) stem from the variation φ2 (δRµν/δgρσ) which is no
longer given by a total derivative because φ2 is no longer a constant. Eq-(11c)
are the corrections to our derivation of the vacuum energy density [3] where we
erroneously omitted these second terms in eq-(11c). The equations of motion
read

3(
(da/dt)

a
)2 + (

3k

a2R2
0

) = 8πG(t) ρφ. (12)

and

−2 (
(d2a/dt2)

a
)− (

(da/dt)
a

)2 − (
k

a2R2
0

) = 8πG(t) pφ. (13)

where the density ρφ and pressure terms pφ must include now the extra contri-
butions to the effective stress energy tensor TBDJ

µν given by the second terms
of eq-(11c). From eqs-(12-13) one can infer the important relation :

− (
(d2a/dt2)

a
) =

4πG(t)
3

(ρ + 3p). (14)

The Jordan-Brans-Dicke scalar φ must obey the generalized Klein-Gordon
equations of motion

( DµDµ + 2RWeyl ) φ + (
dV

dφ
) = 0 (15)

notice that because the Weyl covariant derivative obeys the condition Dµ(gνρ) =
0 ⇒ Dµ(

√
|g|) = 0 there are no terms of the form (Dµ

√
|g|)(Dµφ) in the gener-

alized Klein-Gordon equation like it would occur in ordinary Riemannian geom-
etry (∂µ

√
|g|)(∂µφ) 6= 0. In addition, we have the crucial constraint equation

obtained from the variation of the action w.r.t to the Aµ field :
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δS

δAµ
= 0 ⇒ 6 (Aµφ2 + ∂µ(φ2)) +

1
2

(Aµφ2 − ∂µ(φ)2 ) = 0. (16)

The last constraint equation in the gauge Aµ = 0, forces ∂µφ = 0 ⇒ φ = φo =
constant. Consequently G ∼ φ−2 is also constrained to a constant GN and one
may set 16π GN φ2

o = 1, where GN is the observed Newtonian constant today.
Furthermore, in the gauge Aµ = 0, due to the constraint eq-(16), one can

infer that Dµφ = 0, ⇒ DµDµφ = 0 because Dt φ(t) = ∂t φ−At φ = ∂t φ = 0,
and Diφ(t) = −Aiφ(t) = 0. These results will be used in the generalized Klein-
Gordon equation.

Therefore, the stress energy tensor Tµ
µ = diag (ρ,−p,−p,−p) corresponding

to the constant scalar field configuration φ(t) = φo , in the Aµ = 0 gauge,
becomes :

ρφ =
1
2
(∂t φ−At φ)2 + V (φ) + extra terms = V (φ);

pφ =
1
2
(∂t φ−At φ)2 − V (φ) + extra terms = − V (φ). (17)

the extra terms in (17) stemming from the second terms in eq-(11c) also vanish
because Dµφ2 = 0 and DρD

ρφ2 = 0 when φ = φo = constant and Aµ = 0.
Therefore, from (17) one arrives at

ρ + 3p = − 2V (φ) = −2V (φ). (18)

This completes the proof why the above ρ and p terms, in the gauge Aµ = 0,
become ρ(φ) = V (φ) = −p(φ) such that ρ + 3p = −2V (φ) ( that will be
used in the Einstein-Friedman-Weyl equations (13b) ). This is the key reason
why Weyl’s geometry and symmetry is essential to explain the origins of a
non − vanishing vacuum energy ( dark energy ). The latter relation ρ(φ) =
V (φ) = −p(φ) is the key to derive the vacuum energy density in terms of V (φ =
φo), because such relation resembles the dark energy relation pDE = −ρDE .
Had one not had the constraint condition Dt φ(t) = (∂t − At)φ = ∂t φ = 0,
and Diφ(t) = −Aiφ(t) = 0, in the gauge Aµ = 0, enforcing φ = φo, one would
not have been able to deduce the crucial condition ρ(φ = φo) = − p(φ =
φo) = V (φ = φo) that will furnish the observed vacuum energy density today.

We will find now solutions of the Einstein-Friedman-Weyl equations in the
gauge Aµ = (0, 0, 0, 0) after having explained why Aµ can (and must) be gauged
to zero. The most relevant case corresponding to de Sitter space :

a(t) = eHot; Aµ = (0, 0, 0, 0); k = 0; RWeyl = RRiemann = −12 H2
0 . (19)

where we will show that the potential is

V (φ) = 12H2
0φ2 + Vo. (20)
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one learns in this case that V (φ = φo) 6= 0 since this non-vanishing value is
precisely the one that shall furnish the observed vacuum energy density today (
as we will see below ) . We shall begin by solving the Einstein-Friedman-Weyl
equations eq-(12-13) in the gauge Aµ = (0, 0, 0, 0) for a spatially flat universe
k = 0 and a(t) = eH0t, corresponding to de Sitter metric :

ds2 = dt2 − e2Hot (dr2 + r2(dΩ)2). (21)

the Riemannian scalar curvature when k = 0 is

RRiemann = − 6 [ (
(d2a/dt2)

a
) + (

(da/dt)
a

)2 ] = −12 H2
0 (22)

( the negative sign is due to the chosen signature +,−,−,− ).
To scalar Weyl curvature RWeyl in the gauge Aµ = (0, 0, 0, 0) is the same

as the Riemannian one RWeyl = RRiemann = −12 H2
0 . Inserting the condition

Dµφ = Dtφ(t) = (∂tφ − Atφ) = ∂t φ = 0, in the gauge Aµ = 0, the general-
ized Klein-Gordon equation (3.20) will be satisfied if, and only if, the potential
density V (φ) is chosen to satisfy

( 12 H2
0 ) φ =

1
2

(
dV

dφ
) ⇒ V (φ) = 12 H2

0 φ2 + Vo (23)

One must firstly differentiate w.r.t the scalar φ , and only afterwards, one may
set φ = φo. V (φ) has a Weyl weight equal to −4 under Weyl scalings in order to
ensure that the full action is Weyl invariant. H2

0 and φ2
o have both a Weyl weight

of −2, despite being constants, because as one performs a Weyl scaling of these
quantities ( a change of a scales) they will acquire then a spacetime dependence.
H2

0 is a masslike parameter, one may interpret H2
0 ( up to numerical factors )

as the ”mass” squared of the Jordan-Brans-Dicke scalar. We will see soon why
the integration constant Vo plays the role of the ”cosmological constant”.

The potential density is V = 12H2
o φ2 + Vo where the integration constant

Vo will be determined next. Some important remarks are in order prior to
determining Vo. The potential density V (φ) has a Weyl weight of −4 under
Weyl scalings to compensate for the Weyl weight of the measure of integration√
|g| → e4Ω

√
|g| in the action. This implies that the Weyl weight of the term

H2
o φ2 is −2−2 = −4, as well as the weight of Vo. This means that constants like

Ho and φo behave like parameter-like scalars of weight −1 under Weyl scalings.
There is no contradiction in assigning nontrivial Weyl weights to parameters
like Ho, φo, Vo in Weyl geometry. It is the dimensionless ratio of parameters
that is Weyl invariant.

The reason why constants like Ho, φo admit non-trivial weights is the follow-
ing. A constant, like mass m in ordinary flat space is defined by ∂µ(m) = 0. A
scalar ”constant” like m of weight −1 in Weyl geometry is defined by Dµ(m) =
(∂µ−Aµ)(m) = 0, from which one can infer that Aµ ∼ ∂µ log(m) and that leads
to the conclusion that ”constants” are compatible with Weyl’s geometry if, and
onli if, the Weyl gauge field Aµ is pure gauge, a total derivative. When m is set
to a constant mo independent of the coordinates this is tantamount of choosing
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the trivial gauge Aµ = 0 condition. Under a Weyl gauge transformation, the
constant mo transforms into m′

o = e−Ω(x) mo and A′
µ = Aµ − ∂µΩ and which

is again compatible with the condition that Dµ(m′
o) = (∂µ − A′

µ)(m′
o) = 0 ⇒

A′
µ ∼ ∂µ log(m′

o) 6= 0 because now m′
o has acquired an xµ dependence through

the scaling factor m′
o = e−Ω(x) mo.

Despite that the potential density contribution to the action
∫ √

|g|V (φ)
does not break conformal symmetry when one sets φ = φo in V (φ = φo), because
the parameters Ho, φo, Vo still scale properly under Weyl scalings, it is the
gravitational term in the action (8)

∫ √
|g|φ2 RWeyl, that will break the Weyl

scaling symmetry when it becomes
∫ √

|g|φ2
o RRiemann, because the RRiemann

scalar curvature does not transform homogeneously under Weyl scalings. This is
one of the most salient features of our findings because one is inclined to look for
quartic potentials V = λ φ4 [15] which also scale properly under Weyl scalings,
instead of recurring to quadratic potentials like we have found here within the
framework of Weyl’s geometry V = 12H2

oφ2 +Vo. This fact, of quadratic versus
quartic potentials is the key to obtaining the observed vacuum energy density.

An important remark is in order. Even if we included other forms of matter
in the Einstein-Fredmann-Weyl equations, in the very large t regime, their con-
tributions will be washed away due to their scaling behaviour. We know that
ordinary matter ( p = 0 ); dark matter ( pDM = wρDM with −1 < w < 0 )
and radiation terms ( prad = 1

3ρrad ) are all washed away due to their scaling
behaviour :

ρmatter ∼ R(t)−3. ρradiation ∼ R(t)−4. ρDM ∼ R(t)−3(1+w). (24)

where R(t) = a(t)R0. The dark energy density remains constant with scale
since w = −1 and the scaling exponent is zero, ρDE ∼ R0 = costant. For this
reason it is the only contributing factor at very large times.

Now we are ready to show that eqs-(12-13) are indeed satisfied when a(t) =
eH0t; k = 0; Aµ = 0; φ = φo 6= 0. Eq-(13b), due to the conditions ρ + 3p =
−2V (φ) and φ(t) = φo (resulting from the constraint eq-(16) in the Aµ = 0
gauge ) gives :

− (
(d2a/dt2)

a
) = −H2

0 =
4πGN

3
(ρ + 3p) =

− (
8π GN V (φ = φo)

3
) = − (

8π GN 12 H2
0 φ2

o

3
) − 8πGN Vo

3
. (25)

Eq-(12) ( with k = 0 ) is just the same as eq-(13b) but with an overall change
of sign because ρ(φ = φo) = V (φ = φo). Using the definition 16π GN φ2

o = 1 in
(25) one gets

−H2
0 = − (

8π GN 12 H2
0 φ2

o

3
) − 8π GN Vo

3
= −2 H2

0 − 8π GN Vo

3
⇒

−8π GN Vo

3
= H2

0 ⇒ − 8π GN Vo = 3 H2
0 (26)
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Therefore, we may identify the term − Vo with the vacuum energy density so
the quantity 3H2

0 = −8π GN Vo = Λ is nothing but the cosmological constant.
Hence one has from the last term of eq-(26) :

−Vo = ρvacuum =
3H2

0

8π GN
. (27)

and finally, when we set H2
0 = (1/R2

0) = (1/R2
Hubble) and GN = L2

Planck in the
last term of eq-(26), as announced, the vacuum density ρvacuum observed today
is precisely given by :

−Vo = ρvacuum =
3H2

0

8π GN
=

3
8π

(LPlanck)−2 (RHubble)−2 =

3
8π

(
1

LPlanck
)4 (

LPlanck

RHubble
)2 ∼ 10−123 (MPlanck)4. (28)

Concluding this analysis of the Einstein-Friedman-Weyl eqs-(12-13) : By in-
voking the principle of Weyl scaling symmetry in the context of Weyl’s geometry;
when k = 0 ( spatially flat Universe ), a(t) = eH0t ( de Sitter inflationary phase
) ; Ho = Hubble constant today; φ(t) = φo = constant, such 16πGN φ2

o = 1,
one finds that

V (φ = φo) = 12 H2
0 φ2

o + Vo = 2ρvacuum − ρvacuum = ρvacuum =

6H2
0φ2

o =
3H2

0

8π GN
∼ 10−123 M4

Planck. (29)

is precisely the observed vacuum energy density (28) . Therefore, the observed
vacuum energy density is intrinsically and inexorably linked to the potential
density V (φ = φo) corresponding to the Jordan-Brans-Dicke scalar φ required to
build Weyl invariant actions and evaluated at the special point φ2

o = (1/16πGN ).
Another way of obtaining the same value for the vacuum energy density is

by rewriting the generalized Klein-Gordon equation (15) in the form

−DµDµΦ =
1

2ω + 3
[ Φ

∂V (Φ)
∂Φ

− 2V (Φ) ]; Φ ≡ φ2; ω =
1
4
. (30)

which can be derived directly by taking the trace of the Einstein-Weyl equations
(11b, 11c) (when Tmatter

µν = 0)

−RWeyl =
1

4Φ2
(DµΦ) (DµΦ) +

3
Φ

DµDµ(Φ) +
2
Φ

V (Φ); ω =
1
4
. (31)

and by substituting the Weyl scalar curvature in the generalized Klein-Gordon
equation in terms of the expression given by (31). When DµDµΦ = 0, eq-(30)
leads to
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Φ
∂V (Φ)

∂Φ
− 2V (Φ) = 0 ⇒ V (Φ) = Vo (

Φ
Φo

)2 = Vo (
φ

φo
)4. (32)

After inserting the value RWeyl = −12 H2
o obtained from eq-(19) in the gauge

Aµ = 0; gauging φ to a constant φ = φo ⇒ Dµ(Φo) = 0, and substituting the
expression for the potential V (Φ) = V (φ2) found in eq-(32) into eq-(31), when
φ = φo, gives

12 H2
o φ2

o = 2 Vo (
φo

φo
)4 = 2 Vo ⇒

Vo = 6 H2
o φ2

o =
3H2

0

8π GN
∼ 10−123 M4

Planck (33)

which is again the observed value of the vacuum energy density. Having deter-
mined the value of the constant Vo = 6H2

oφ2
o appearing in the potential found

in (32) it yields the most general expression for other values of φ

V (Φ) = Vo (
Φ
Φo

)2 = Vo (
φ

φo
)4 = 6 H2

o φ2
o (

φ

φo
)4 (34)

thus, it is the particular value V (φ = φo) = 6 H2
o φ2

o that leads to the observed
vacuum energy density today.

Concluding, one has been able to reproduce the observed vacuum energy
density (cosmological constant) to very high precision such that the temporal
flow of the scalar field φ(t) from t = 0 to t = to, in Riemannian geometry, has
the same numerical effects (as far as the vacuum energy density is concerned) as
Weyl scalings from the field configuration φ(t) to the constant field configuration
φo. We believe this temporal flow of the vacuum energy density, from very high
values in the past, to very small values today to, is not a numerical coincidence
but is the signal of an underlying Weyl geometry (conformal invariance) oper-
ating in cosmology and combined with the dynamics of a Brans-Dicke-Jordan
scalar field. Therefore, Weyl scalings in Weyl geometry can recapture the flow
of time consistent with Segal’s Conformal Cosmology, see [16], [4] and references
therein, in such a fashion that an expanding universe may be visualized as Weyl
scalings of a static universe. Scalings as time’s arrow has been investigated by
others [11] within a different context than Weyl’s geometry and Brans-Dicke-
Jordan gravity. These ideas deserves further investigation.

The most general Lagrangian involving dynamics for Aµ is

L = −φ2RWeyl(gµν , Aµ)+
1
4
FµνFµν +

1
2
gµν(Dµφ)(Dνφ)−V (φ)+Lmatter + .....

(35)
The Lmatter must involve the full fledged Weyl gauge covariant derivatives

acting on scalar and spinor fields . It is a well known fact to the experts that
the electron neutrino mass mν ∼ 10−3 eV is of the same order as (mν)4 ∼
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10−123 M4
Planck and that the SUSY breaking scale in many models is given by

a geometric mean relation : m2
SUSY = mν MPlanck ∼ (5 TeV )2.

This completes our review and corrections to the derivation of the vacuum
energy density [3] and a new derivation based on eqs-(30-33). The main new
lesson found here is why the quadratic potential V (φ) = 12H2

o φ2 + Vo does
not break the Weyl scaling symmetry after fixing the gauge φ = φo, leading to
the observed vacuum energy density V (φo) = 6H2

oφ2
o, but it is the Brans-Dicke-

Jordan gravitational terms φ2 RWeyl that break the Weyl invariance when they
become φ2

o RRiemann = 1
16πGN

RRiemann and leading to the standard Einstein-
Hilbert action. The reason being that the scalar Riemann curvature does not
transform properly under Weyl transformations. The cosmological constant in
the gauge-fixed action (8), when Aµ = 0 ⇒ φ = φo and Dµφ = 0, is defined by
8πGN ρvacuum :

Λ = (8πGN ) (6H2
o φ2

o) = (8πGN ) (6H2
o ) (

1
16πGN

) =
3

R2
H

; Ho =
1

RHubble
.

as observed, an ever (accelerating) expanding de Sitter Universe with a very
small (bot not zero) cosmological constant of the order of 10−123M2

Planck.
To finalize, there are many differences among our approach and that of [12].

(i) The Cheng-Weyl approach [12] to account for dark energy and matter (
including phantom ) does not use the Weyl scalar curvature with a variable
Newtonian coupling 16π G = φ−2 for the gravitational part of the action, but
the ordinary Riemannian scalar curvature with the standard Newtonian grav-
itational constant . (ii) There was no use of Weyl covariant derivatives in the
matter terms. The Weyl covariant derivative is only used in the kinetic (Dµφ)2

terms for the Jordan-Brans-Dicke scalar φ . And, ( iii ) the authors [12] intro-
duced a triplet of Cheng-Weyl gauge fields A1

µ, A2
µ, A3

µ whereas here we have only
one field Aµ. The role of conformal transformations in accelerated cosmologies
has bee studied by [6]. Weyl invariance has been used in [14] to construct Weyl-
Conformally Invariant Light-Like p-Brane Theories with numerous applications
in Astrophysics, Cosmology, Particle Physics Model Building, String theory,.....

Concerning Weyl geometry and matter creation in the universe see the work
of [10]. A thorough study of the unification of geometric and random structures
in Physics within the framework of Riemann-Cartan-Weyl spacetimes has been
performed by [13]. Conformal Transformations and Accelerated Cosmologies
have been studied by [6]. The vacuum energy problem from the Finsler geometry
perspective has been analyzed by [8]; modified f(R) gravity actions as another
approach to the dark energy problem can be found in [7] and references therein.
Energy conditions in f(R) gravity and Brans-Dicke Theories have been studied
recently by [9].
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