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        The G measurements are made with torsion balance in “vacuum” to the aim of eliminating the air convection disturbance. 
Nevertheless, the accuracy of the measured G values appears unsatisfying. In 2000 J.Luo and Z.K.Hu first denounced  the presence 
of some unknown systematic problem in high vacuum G measurement.  In this work a new systematic effect is analysed which 

arises in calm air from the non-zero balance of the overall momentum discharged by the air molecules on the test mass in the 
vacuum chamber.  This effect is normally negligible, but the disturbing force becomes comparable to the gravitational force when 
the chamber pressure drops to about 10-5 bar , at which the molecule mean free path equals the thickness of the meatus facing the 
test mass. At the epoch of  Heyl’s measurement at 1 millibar  (1927), the technology of vacuum pumps reaching void levels up to 
10-9 bar was developed, but this chance was not used. The recent G measurements used high vacuum techniques up to 10 -10 bar and 
10-11 bar, so the effect of the air meatus results very little.  What happened to the “missing” measurements made at vacuum 
pressures in the “forbidden” interval between millibar and nanobar ?  As a matter of fact, we were not able to find the relat ed 
papers in the literature. This lack appears embarrassing in absence of an adequate  physical explanation. 
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Everyone knows the simple experience of two flat microscopy 

glasses which cannot be separated from each other when their 
surfaces touch.   Obviously this effect is due to the pressure of 
external air whose molecules are unable to penetrate between 
the corrugations of the polished surfaces, so within the small 
meatus there is a considerable air depression. The mean free 
path of the air molecules at normal pressure is about 10-7 metres, 
that is of the same order of magnitude of the polished surface 
corrugations.   In general, the molecules are not able to freely 

penetrate within a meatus whose thickness is reduced to about 1 
mean free path . 
  When we consider the meatus facing the gravitational test mass 
of a torsion balance placed in a vacuum chamber, the little air 
depression within the meatus originates a little force on the test 
mass, which adds to the gravitational force. The disturbing force 
is often negligible, but when the pressure within the vacuum 
chamber is reduced beyond a millibar (for instance to avoid 

other disturbances due to air convection) the meatus optical 
thickness further reduces, so the above condition about 1  mean 
free path may occur. It appears necessary to investigate this 
phenomenon to obtain a quantitative prediction of the disturbing 
drawing force arising in the G measurements.   
 
     The torsion balance apparatus was first used by Cavendish in 
1798 in a simple form which permitted him to reach an 

unexpected accuracy.  In the following two centuries the torsion 
balance was used by several experimenters (Boys, Eotvos, Heyl, 
etc.) who substantially improved the technique, but the level of 
accuracy did not show a dramatic enhancement. 
  Several methods were devised in the XX century to measure G.  
In a Conference organised at London in 1998 - two centuries 
after Cavendish - by C.C.Speake and T.J.Quinn [1] a variety of 
papers described the methods of measurement and their 
potential accuracy  related to the disturbances and systematic 

errors. Many experiments were described. For instance: a 
torsion balance where the gravitational torque is balanced by an 
electrostatic torque produced by an electrometer;  a torsion-strip 
balance where the fibre is substituted by a strip; a dynamic 
method based on a rotating torsion pendulum with angular 
acceleration feedback; a free fall method where the 
determination of G depends on changes in acceleration of the 
falling object, etc.   

 Notwithstanding the technological improvement, up to now the 
gravitational constant is the less accurately known among the 
most important constants in physics.  The uncertainty has been 
recognised to depend on various experimental factors.   
 To eliminate the air thermal convection on the test mass, in 
1897 K.F. Braun made a torsion balance measurement after 

extracting the air from the ampoule.  The level of vacuum 

obtained with his technique is not known. 
 In 1905 W. Gaede invented the rotary pumps reaching the void 
level of 10-6 bar.  Subsequently Gaede developed the molecular 
drag pumps (1915) using Hg vapour.  In 1923 the mercury was 
substituted by refined or synthetic oil, which enabled to reach 
void levels around 10-9  bar. 
       In 1927 Heyl [2] made a benchmark measurement with a 
heavy torsion balance to the aim of establishing a firm value of 

G. Although the high vacuum technology was available, he  
adopted a chamber pressure equal to 1-2 millibar. The molecule 
mean free path at 1 millibar is about 10-4 metres, a quantity 
much smaller than the thickness of the meatus.  From our 
present investigation it appears that the air pressure effect does 
not alter the accuracy of the classical G measurements 
performed at pressures higher than some millibars. But this fact 
was unknown at the epoch. In any case the choice of high 

vacuum was compelling against the air convection disturbance. 
   After 1958 the development of turbomolecular pumps and the 
improved molecular drag pumps made available an ultra-high-
vacuum up to 10-13  bar. Also this spectacular jumping was 
apparently disregarded by the G experimenters. In 1987 G.T. 
Gillies published an Index of measurements [3] containing over 
200 experiments, which does not reveal the choice of pressures 
between the millibar and the nanobar.  At the end of the ninety 

the indecisive measured values of G became publicly discussed. 
    A status of the recent G measurements was published in 2000 
by J.Luo and Z.K.Hu [4] in which the presence of some 
unknown systematic effect was first denounced: “This situation, 
with a disagreement far in access to the estimate, suggests the 
presence of unknown systematic problems”.  
 In 2003 R.Kritzer [5] concluded that “the large spread in G 
measurements compared to small error estimates, indicates that 
there are large systematic errors in various results”. 

     Among the last experiments, some of them used new 
sophisticated methods with technologies coupled to very low 
pressures within the test chamber.  This fact shows a new 
attention to the problems of possible unknown air effects. 
     J.H. Gundlach and S.M.Merkowitz [6] made a measurement 
where a flat pendulum is suspended by a torsion fiber without 
torque since the accelerated rotation of the attracting masses 
equals the gravitational acceleration of the pendulum.  

To minimise the air dynamic effect, the pressure was lowered to  

10-7 Torr (po 10-10 bar).  At this pressure the classical mean free 

path  l = m/ o  (valid within a large homogeneous medium) is 

of the order of 1000 metres. Hence within the vacuum chamber 
the lack of flux homogeneity is everywhere present . 
      Another accurate measurement was performed in 2002 by  
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M.L.Gershteyn et al. [7] in which the pendulum feels a unique 

drawing mass fixed at different distances from the test mass. 
The change of the oscillation period determines G.  To minimise 
the air disturbance, the pressure in the vacuum chamber was 
lowered to 10-6 Pascal (i.e. po =10-11 bar).  The reason for such a 
dramatic lowering is not discussed. The authors revealed the 
presence of a variation of G with the orientation (regard to the 
fixed stars) amounting to 0.054%.  Incidentally, the anisotropy 
of  G agrees with the gravitational-inertial theory discussed in 

ref. 19. 
      In 2004 a new torsion balance configuration with four 
attracting spheres located within the vacuum chamber  (po 
=1.5x10-10 bar) was described by  Z.K.Hu and J.Luo [8].  The 
four masses are aligned and each test mass oscillates between a 
pair of attracting masses. Each test mass determines with the 
adjacent spheres a small meatus (estimated about  4 mm) and a 
large meatus (about 16 mm).  During the experiment the authors 
found the presence of an abnormal period of the torsion 

pendulum, which resulted independent of the material wire, test 
mass, torsion beam and could not be explained with external 
magnetic or electric fields. Adopting a magnetic damper system, 
the abnormal mode was suppressed, but the variance of the 
fundamental period of the pendulum introduced an uncertainty 
as large as 1400 ppm,  testifying the presence of a systematic 
disturbance in determining G. 
   We applied to this problem the analysis carried out in this 

paper.  From the air density of the vacuum chamber, we 
calculate the optical thickness of the small meatus and the 
related air depression (eq.5), which substituted in eq(7) gives 

upon the test mass a disturbing force rising up to F(po)  10-14 

newton, equivalent to about 10-4 times the gravitational force, 
which alters the pendulum period.  This fact agrees with the 
author conclusions [8] that the torsion balance configuration 
would have an inherent accuracy of about 10 ppm in 
determining G, but the uncertainty in the fundamental period 
reduces this accuracy to 1400 ppm.                                                                                      

    The presence of an abnormal disturbance was previously 
described (1998) by  Z.K.Hu, J.Luo, X.H. Fu et al. [9] in dealing 
with the time-of-swing method.  They found the presence of 
“important non-linear effects in the motion of the pendulum 
itself, independent of any defect in the detector, caused by the 
finite amplitude of the swing”.  Their configuration consisted in 
a torsion balance with heavy masses external to the vacuum 
chamber, where the pressure was lowered to   po = 2x10-10 bar.  

The test mass, diameter about 19 mm, was suspended within a 
stainless vacuum tube placed between two heavy masses distant 
60 mm apart.  Since the test mass oscillates up to 8 mm from the 
centre of the vacuum tube, the optical thickness of the small 
meatus can be deduced. The smaller this thickness, the greater 
the disturbing force F(po). Repeating the analysis carried out for 
the preceding experiment, we found a force F(po) which 
represents a little fraction of the gravitational force, due to the 

heavy attractor masses.    
Comparing with many measurements made in the era of high 
vacuum technology [10,11,12,13,14,15,16,17,18] we observed 
that the experimenters did never report “vacuum” pressures 
between millibar and nanobar.  The reason for this avoidance 
does not appear to have been discussed.  
    
     The scattering of molecules hitting a smooth surface does not 

generally follow the optical reflection because they may interact 
with  single atoms/molecules of the lattice.  As it happens when 
two free particles come in collision,  these molecules can be 
scattered in all directions.  Conversely, the molecules hitting the 
surface from a nearly parallel direction interact softly with the 
field of the atomic lattice.  In fact the nearly parallel molecules, 

whose little momentum     q = mv   makes an angle    /2   

with the vertical axis, receive from the field a small vertical 

momentum   q  2 mv cos   which redirects the molecules 

along a nearly optical reflection.   Since the momentum  hv/c of 
the UV rays is comparable to the momentum of air molecules at 

normal temperature, the air molecules hitting a polished surface 
show a phenomenon analogous to the limiting angle of optical 
reflection presented by photons incident the surface between 
two media. 
  To resume: after scattering on a flat surface a fraction of the 
nearly orthogonal molecules becomes quasi-parallel.   As a 

consequence an isotropic flux o of molecules hitting a smooth 

surface, after scattering becomes a non-isotropic flux  w().   

This condition may be described by the relationship  

         (1)                w()  o (1  1 cos + 2 sin) 

where o  the parameters  1 ,  2  satisfy the total flux condition     


2   π

o   
sin w() d = o .  Moreover  we assume (similarly with 

the photon scattering on surgaces) that about  percent of the 

nearly orthogonal molecules become quasi-parallel after 
scattering on the wall.  Applying  these two conditions one 

obtains the figures  1  1.46 ,   2  = 21/  0.928 , where  

may range between 10%  down to  0,01% for smoothed glass 
walls. 

This physical condition makes easy to understand the molecular 
flux depression within the meatus around the moving mass. This 
phenomenon becomes particularly evident at low air pressures. 
For instance when the pressure is about 0.23 millibar, 99.99% 

molecules hitting the test mass come from scattering with other 
molecules within the meatus, whereas 0.01% molecules come 
directly from the scattering on the chamber wall.  To feel a flux 
depression in the meatus it is necessary that the molecules 
coming from wall-scattering be about a half of the total. Within 
an air meatus of thickness  s  this happens when the optical 

thickness    s = s o /m   107s o    equals  a mean free path, 

i.e. when the air density equals   o  10-7/s . For usual torsion 

balances the critical vacuum pressure which maximise the flux 

depression is around    po  (13)x10-5 bar. 

  The ancient G measurements adopted a torsion balance at 
atmospheric pressure, so the meatus effect took place  between 
the test mass and the attracting sphere.  This happens also to G 

measurements in vacuum when the heavy masses are comprised 
within the chamber.  But in general the G measurements in 
vacuum are made with the heavy masses outside the chamber. In 
this case we define “meatus” the air comprised between the test 
mass and the adjacent wall of the vacuum chamber (fig.1).  At a 
pressure of the order of some millibar the molecular flux upon 
the moving mass is highly uniform, so the sum of every 
momentum discharged by molecules on the sphere is null for 

any practical purpose. 
 However, when the pressure in the chamber is further reduced, 
the molecular flux begins to show a little depression in the 
meatus.  The flux depression in the circular meatus may be 
expressed along the radial direction  x  

(2) (x)  m (1+ k x2) 

 where m  is the minimum figure the flux takes on the axis.  

Since the flux on the boundary (x = L) is the unperturbed flux 

o, then one gets  m (1+ k L2) = o   , which shows that  k  is 

linked to the flux parameters of the meatus  

k = (o /m 1)/L2 

 where  L  R cos   is the radius of the area of the test mass 

experiencing the flux depression. The angle  , defined by   sin 

= R/R+s   (where R is the radius of the moving mass, s is the 
minimum thickness of the meatus),  plays a fundamental role 
since it describes the shadow of the moving mass on the 
adjacent chamber wall. 
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    Choosing spherical co-ordinates with the same axis of the 

meatus and origin (fig.1) in the point B, the monokinetic 

transport theory gives us the angular flux B() of incident  

molecules integrating along the meatus thickness  s()  the  

scattered molecules, to which one must add the uncollided 

molecules due to the flux  S()  scattered on the surface of the 

moving mass 

    B() = 
)( 

 

s

o
 (r) exp( r) dr  +  S()  exp( s()) 

where   (r) = (r)/m is the air macroscopic cross section;       

 (r)  is the density of isotropically scattered molecules;          

 s()  is the optical thickness along  of the meatus.  This 

angular flux holds for    .  The above presentation of the 

problem has only an instructive character denoting the 

complexity of the problem, because the fluxes (r)  and  S() 

are unknown. 

Fig.1 – Schematic drawing of a torsion balance comprised in a 
vacuum chamber. 
 
To solve the problem of calculating the molecular flux within 
the meatus we adopt the principle of superposition of the effects.  

Consider the test sphere surrounded by the air in the vacuum 
chamber at pressure po. To obtain the disturbing force F(po) on 
the test mass we must calculate the flux in the point A of the 
sphere and in the point C diametrically opposite (fig.1).  Let’s 
now remove the sphere and substitute an equal volume of air at 
pressure po , so the chamber results filled with the uniform 

molecular flux o.  Let’s calculate the flux incident on both sides 

of the point A considering a spherical co-ordinates system with 
origin in this point (fig.1). The angular flux  on the right-side of  
the point A is due to the scattering on the molecules within the 

sphere volume and to the uncollided molecules coming from the 

surface of the sphere (point P) where there is the uniform flux o  

(3)         ’+ () =  
  )( 

  

t

o
Σ o exp( r) dr + o exp[ t()]               

where   t() = 2R cos   is the distance between the points A 

and P (fig.1) placed on the (virtual) surface of the removed 
mass.   Let’s notice that the first term in eq(3) represents the 
flux due to the scattering source occupying the sphere volume.                          
When we cancel this source term (for instance reintroducing the 

test mass), eq(3) gives the  flux 

A+() = o exp(2 R cos) .                                                                                                                                                                                                                     

On the left-side of the point A the flux comes from scattering on 
the air within the meatus and from the uncollided molecules 
coming from the chamber wall 

A- ()  =  o [1 exp( z())] + w() exp( z()) 

where   z()  is the wall distance and  w()  is the flux scattered 

on the chamber wall, as defined by eq(1).    Since in general the 
size of the chamber is much larger than R , one may assume the 

distance z()  s /cos .  Subtracting the flux A+() from A- 

()  gives the actual flux  on the point A of the test mass 

A()  o  [1 exp(2 R cos)]  [ow()] exp( s /cos). 

 Now we calculate with the same procedure the incident flux on 
the point C 

C()  o [1 exp(2 R cos)]  [ow()]  exp(   (s+2R)/cos)]. 

The disturbing force on the moving mass is linked to the 
different pressures on the points A and C due to the momentum 
discharged by the molecular flux on these points.  The molecular 
flux shows the following difference across the test mass 
diameter 

(4)        o = (C  A) = o 
2    π

o   
sin [C()  A()]d .  

Substituting and putting   w() = w()/o ,  one gets the flux 

difference 

   o = o 



2    π

o   

sin   [1 w()] [exp( s /cos)  exp( (s+2R)/cos)]d 

which confirms that the meatus depression depends on the 

anisotropy of the flux  w()  scattered on the wall.  Through 

eq(1) we also have 

w() = 1  1 cos + 2 sin 

which, substituting in the above equation gives the relative air 

depression  

    (5)          po/po = o/o = 1 ( s, R)  2  ( s, R) 

where the functions 

 ( s, R) = 
2 π

sin

  

 
    

 o
α cos [exp( s /cos)  exp( (s+2R)/cos)]d 

 ( s, R) = 
 /2  π

o  
sin

2
 [exp( s /cos)  exp( (s+2R)/cos)] d  

depend on the meatus geometry and on the air density  o =  

m/  in the vacuum chamber.   These functions do not appear to 

have been tabulated. Fitting functions have been used for 
calculations, whose accuracy is not completely satisfying. 

To give a quantitative idea, the relative depression   po /po  has 

been calculated assuming the usual size of a torsion balance.                                                                                                 
For instance: test mass radius R = 5 mm,  meatus thickness   s = 

4 mm,  chamber pressure po  1 millibar ,  air density 10-3 

kg/m3 , macroscopic scattering cross section    104 m-1 ,   s  

40 .   Substituting in eq(5)  one obtains    po /po   1.5x10-20   

which shows the high uniformity of the molecular flux within 
the meatus at 1 millibar. 

However the chamber pressure  po = 10-5 bar  corresponds to a  

sensible depression    po /po   3.37x10-3   which alters the 

gravitational force when the gravitational masses are aligned.  

  The disturbing force due to the small depression within the 

meatus    p(r) = mv[o (r)]   is defined by 

      (6)                  drrrF o      mv 
L 

o 
)]([2    

where L = R cos  is the radius of the circular section of the 

meatus where  p(L) = po .   Substituting the flux distribution 
given by eq(2) one gets the pressure 

p(r) = mvm (1+ k r2) 

and the corresponding depression within the meatus 

po – p(r) =  po [1– (m/o) (1+ k r2)]. 

 Substituting the expression of  k  by eq(2a) one obtains         

                         po – p(r) =  po (1– m/o) (1– r2/L2)     

which, substituted in eq(6), gives us the force                        

 (7)                         F = (/2) po L
2   

(po/po)            



where the relative depression is given by eq(5). Assuming for 

smoothed chamber walls a value  = 0.1% we obtain the 
disturbing force reported in Table 1. One can notice that in the 

assumed torsion balance apparatus with light test mass (R = 5 
mm) the disturbing force  F(po)  takes a maximum at a pressure po 

1pascal =10-5 bar  which makes the optical thickness of the 

meatus about equal to 1.  This maximum is estimated to rise near 
the figure of the measured gravitational force Fgr . Even taking 
into account the questionable accuracy of the fitting functions, the 
values of the disturbing force explain ad abundantiam  why the 
region of the intermediate pressures between millibar and nanobar 
was avoided by the experimenters.                             

Obviously, what is of interest in the measurements is the 

systematic error due to  F(po).  For instance in the Gershteyn’s 
light torsion balance (where Fgr is estimated around  10-10 newton) 
the measurement was made at a pressure po =10-11 bar, so the 

disturbing force F(po) gives a systematic error   2x10-8 .   

  In the Heyl’s heavy balance experiment (where the measured Fgr  

was of the order of 10-9 newton) the disturbing force F(po) at a 

pressure  po = 1 millibar gives  10-16 . However the random 

error due to the air convection was  probably around   10-4 , that 

is much larger than the systematic error of the calm air effect.

 

 Table 1 – Calculation of the disturbing force due to the air molecules within the vacuum  chamber of a gravitational torsion balance.  The 
assumed geometrical  characteristics are :  meatus thickness  s = 4 mm , moving mass radius R = 5mm. 

Vacuum pressure 

p o                  
(pascal) 

Air density        

    o                 

(kg/m3 ) 

Meatus optical width    

   s                    

(m.f.p.) 

Flux depression in the 
meatus 

               o/o 

Disturbing force 

    F(po)                      
(newton) 

100 10-3 40 1.4x10-22   1.0x10-25 

10 10-4 4 2.86x10-6 7.2x10-10 

1 10-5 0.4 3.37x10-5 8.4x10-10 

0.1 10-6 4x10-2 6.74x10-5  1.7x10-10 

10-2 10-7 4x10-3 1.8x10-5 4.5x10-12 

10-3 10-8 4x10-4 4.4x10-6 1.1x10-13 

10-4 10-9 4x10-5 1.1x10-6 2.8x10-15 

10-5 10-10 4x10-6 2.8x10-7 7x10-17 

10-6 10-11 4x10-7 8x10-8 2x10-18 
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