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Abstract

In a previous publication,! we argued that the biquaternion-
ic extension of the Klein-Gordon equation has numerical
solution with sinusoidal form, which differs appreciably
from conventional Yukawa potential. In the present article
we interpret and compare this result from the viewpoint of
the EQPET/TSC (Electronic Quasi-Particle Expansion
Theory/Tetrahedral Symmetric Condensate) model described
by Takahashi.2 Further observation is of course recommend-
ed in order to refute or verify this proposition.

Introduction
In the preceding articlel we argued that biquaternionic
extension of the radial Klein-Gordon equation
(radialBQKGE) has numerical solution with sinusoidal form,
which differs appreciably from conventional Yukawa poten-
tial—and may be interpreted as plausible implication of
“local potential” in the Yang-Mills field.3 We also argued
that this biquaternionic extension of KGE may be useful in
particular to explore new effects in the context of low-ener-
gy nuclear reaction (LENR).5

Interestingly, Takahashi2 has discussed key experimental
results in condensed matter nuclear effects in light of
EQPET/TSC. We argue here that the potential model used in
his paper, STTBA (Sudden Tall Thin Barrier Approximation),
may be comparable to our derived sinusoidal potential from
radial biquaternion KGE.1 While we don’t yet offer numerical
prediction, our qualitative comparison may be useful in veri-
fying further experiments.

Solution of Radial Biquaternionic

KGE (radial BQKGE)

In our previous paper,! we argued that it is possible to write
the biquaternionic extension of the Klein-Gordon equation
as follows:
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where e4, e,, e5 are quaternion imaginary units obeying (with

ordinary quaternion symbols e;=i, e,=j, e3=k):3:4

i2=j2=k2=-1, ij=-ji =k, 3
jk=-kj=i , ki=-ik=j.
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And quaternion Nabla operator is defined as:?2
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By using polar coordinates transformation,1.6 we get this for

the one-dimensional situation:
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The solution is given by:1
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Therefore, we may conclude that numerical solution of radi-
al biquaternionic extension of Klein-Gordon equation yields
different potential compared to the well-known Yukawa

potential:1
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In the next section we will discuss an interpretation of
this new potential (6) compared to the findings discussed by
Takahashi2 from condensed matter nuclear experiments.

Comparison with Takahashi’s

EQPET/TSC/STTBA model

Takahashi? reported some findings from condensed matter
nuclear experiments, including intense production of heli-
um-4 (4He) atoms by electrolysis and laser irradiation exper-
iments.

Takahashi analyzed those experimental results using
EQPET formation of TSC were modelled with numerical
estimations by STTBA. This STTBA model includes strong
interaction with negative potential near the center (where
r - 0). See Figure 1.

Takahashi described that Gamow integral of STTBA is
given by:

b 1/2
r,=0.218 (ul/Z)I (Vp—Eg dr (8)

To

Using b=5.6 fm and ry=5 fm, he obtained:
Py =0.77 )
and

Vg = 0.257 MeV (10)

While his EQPET model gave significant underestimation
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Note: This Figure is unscaled.

Figure 1. Potential for Coulomb barrier reversal for STTBA, reprinted with
permissionfrom Takahashi.2

for 4D fusion rate when rigid constraint of motion in 3D
space was attained, introducing different values of A44 can
improve the result.2 Therefore we may conclude that STTBA
can offer good approximation of condensed matter nuclear
reactions.>

Interestingly, the STTBA lacks sufficient theoretical basis,
therefore one can expect that a sinusoidal form (or com-
bined sinusoidal waves such as in Fourier method) may offer
better result which agrees with experiments. This will be pur-
sued in a later paper.

Nonetheless, we recommend further observation in order
to refute or verify this proposition of a new type of potential
derived from the biquaternion radial Klein-Gordon equation.
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