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Abstract 

Despite its remarkable predictive power, the Standard Model for particle physics (SM) leaves out many 

open questions. Two representative examples are the issue of CP violation and the anomalous magnetic 

moment of leptons (AMM). Our work develops from the premise that the postulate of unitary evolution no 

longer holds near the scale of electroweak interaction or near the “new physics” sector of SM. Results 

suggest that CP violation in kaon physics and the AMM problem are direct manifestations of fractional 

dynamics. Numerical predictions are found to be in close agreement with experimental data.     

 

Introduction It is well known that symmetries are key ingredients of relativistic quantum 

field theory (QFT). In general, symmetry in QFT is associated with the invariance of field 

equations to certain transformations of its observables. In particular, invariance of field 

equations to the combined action of parity P  (space reflection) and charge conjugation 

C  (swapping particles with their antiparticles) is referred to as the CP  symmetry. One 

puzzling aspect of SM is that CP  symmetry is violated in weak interactions, that is, in 

quantum processes involving the exchange of massive vector bosons. Likewise, we 

define dynamic anomalies as deviations from a particular behavior predicted by field 

theory. For example, the AMM problem is defined as the departure of the measured 

magnetic moment of leptons 
meas

lg  from its nominal value of 2SM

lg   inferred from Dirac 

equation [1-3]. To simplify the terminology and presentation, symmetry violation and 
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dynamic anomalies are treated hereafter under the generic name of anomalies. Using this 

ansatz, we focus on two important anomalies of particle physics: a) the violation of CP  

symmetry in neutral K -meson sector, b) the AMM problem. It is believed that a 

satisfactory resolution of these challenges may shed light on the poorly understood non-

perturbative sector of SM [4-5]. The discussion is limited to these anomalies because, 

unlike other open questions surrounding SM, CP  violation in kaon physics and the AMM 

problem have a well tested and reliable experimental basis. It is important to recall that, 

although SM is able to properly describe these anomalies, it cannot explain them. For 

example, CP  violation effects are embodied in SM through a complex phase entering the 

quark mixing matrix. This phase is the single source of CP violation in flavor-changing 

transitions. However, its contribution fails to account for the magnitude of the observed 

matter-antimatter imbalance in the Universe [6-7]. 

The letter is organized according to the following plan: next section surveys the 

motivation for framing the dynamics of anomalous phenomena in the language of fractal 

operators. The following sections list the underlying definitions and hypotheses and 

discuss chiral properties of these operators. Analysis of anomalies is developed 

afterwards. Summary of results and future extensions are listed in the final section. 

We acknowledge from the outset the introductory nature of our study. Independent 

research is required to validate, develop or falsify these preliminary predictions. 

Onset of complex dynamics near the Fermi scale The electroweak interaction is 

transmitted by photon ( ) over large distances and by the triplet of massive vector 

bosons 0,W Z  over the short-distance region set by the Fermi constant 

1
2( 293 )FG GeV


 [8-9]. The Fermi scale represents about the largest energy region 
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probed with the current accelerator technology. We start with the observation that P, CP 

and dynamic anomalies are linked to either the electroweak interaction or the “new 

physics” (NP) sector of SM [6-9]. This observation suggests that unitary evolution 

postulated by QFT no longer holds near these large energy scales. Here, quantum 

processes evolve in a highly unstable, “noisy” environment and are prone to migrate 

outside equilibrium. An immediate question is then: How does this regime impact the 

dynamics of interacting fields? In searching for an answer to this question, it is sensible 

to follow the Renormalization Group ideas (RG) describing the approach to critical 

behavior in field theory. RG asserts that, near criticality, a) fast “noise” fluctuations can 

be averaged out and absorbed into a redefinition of observables, b) slow and fast 

fluctuations decouple [10-11]. This entails that the scale of “noise” and the scale on 

which quantum fields evolve are at least one order of magnitude different. There is, 

however, at least one crossover region where this ansatz fails and critical fluctuations can 

only be partially suppressed [11]. These considerations suggest that any attempt to extend 

the dynamic framework of field theory beyond QFT needs to comply with the following 

requirements: 

a) must describe non-unitary processes where the scale of “noise” and scale of quantum 

fields overlap. 

b) must have a built-in asymmetry to the reversal of space and time coordinates. [12] 

c) has to asymptotically approach conventional QFT, which is by construction a theory of 

unitary phenomena.  

A framework that naturally fits this description is based on fractional dynamics. 

Fractional dynamics operates with derivatives of non-integer order called fractal 
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operators and is suitable for analyzing complex processes with long-range interactions 

[12-14]. Building on the current understanding of fractal operators, we take the 

dimensional parameter of the regularization program 4 d    to represent the order of 

fractional differentiation in physical space-time (alternatively, 1 d    in one-

dimensional space) [13, 15-16]. According to this viewpoint, anomalous behavior starts 

to develop as soon as   departs from zero. Full scale invariance and mean-field theory 

are asymptotically recovered as 0  [11]. 

Definitions and assumptions In this letter we use the Riemann-Liouville definition for 

the one-dimensional left and right fractal operators [16]. Taking the time coordinate to be 

the representative variable, one writes 

                                     0

0

1
( ) ( ) ( )

(1 )

t

L

d
D f t t f d

dt

   


 
                                       (1a)   

                                    
0

0

1
( ) ( ) ( ) ( )

(1 )
R

t

d
D f t t f d

dt

   


  
                                  (1b)   

Here, fractional dimension 0 1   denotes the order of fractional differentiation. We 

further specialize (1) to the case 1   . Hence, 

                                             0

0

( ) ( ) ( )

t

L

d
D f t t f d

dt

                                               (2a)   

                                           
0

0 ( ) ( ) ( ) ( )R

t

d
D f t t f d

dt

                                             (2b)                                 

We also assume that analytic continuation is fully applicable to (1) and (2). As a result, 

substitution of the original time variable with its complex analogue t it   does not alter 

the physical content of the theory [17]. 
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Chiral and mixing properties of fractal operators Left and right fractal operators (L/R) 

are natural analogues of chiral components associated with the structure of quantum 

fields [13].  It is important to note that there is an inherent mixing of (L/R) operators as 

described below. An equivalent representation of (1a) is given by   

0

0

1
( ) ( ) [ ( )] ( )

(1 )
L

t

d
D f t t f d

dt

   


   
                               

or, 

0

00

( 1)
( ) ( ) ( ) ( ) ( 1) ( )

(1 )
L R

t

d
D f t t f d D f t

dt


     




 

    
    

                                           00 0( 1) exp( )R L LD D i D                                                (3a) 

Starting from (1b) instead, we find 

                                              00 0( 1) exp( )L R RD D i D                                             (3b)                     

Let us iterate (3) a finite number of times ( 1n  ) under the assumption that 1n n  . 

It follows that the fractal operator of any infinitesimal order may be only defined up to an 

arbitrary phase factor exp( ) 1 ( ) 1i n i n i        , that is, 

0

0 , 0 ,( ) [ ] ( )L R L RD f t D i f t    

or 

                                              0

0 , 0 ,( ) [ ] ( )L R L Ri D f t i D f t                                                (4a) 

where   

                                                      ,
0

lim ( ) ( )L RD f t f t


                                                    (4b) 

Finally, the postulated property of analytic continuation transforms (4) into  

                                                 
0

0 , 0 ,( ) [ ] ( )L R L RD f t D f t                                                (5)                 
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There is a fundamental distinction between (5) and the gauge transformation of 

conventional QFT. A gauge transformation is an operation that preserves unitarity, whilst 

(5) is built from fractal time operators that break time-reversal invariance [12]. As stated 

at the beginning of this section, these relations show that fractional dynamics induces a 

topological mixing among all quantum states. This phenomenon does not have a 

counterpart in conventional QFT. 

Universal transition to equilibrium According to the so-called Feigenbaum paradigm, 

asymptotic transition to mean-field behavior and scale invariance is described by 0   

and occurs through a universal sequence of period-doubling bifurcations [13, 18-19]. 

For 2 1pn  , the bifurcation set is represented by the geometric progression 

                                                         
n

n C  


                                                         (6a)  

in which C,   are scaling constants and 0   ( 4)d  . Dividing both sides by C, 

rescaling the dimensional parameter and dropping the tildes yields 

                                                              
2p

p 


                                                             (6b)  

The expectation is that, near the transition from classical to fractional dynamics, 

index p assumes a range of values that are close to unity ( 1,2,3..p  .). In addition, if 

there are N independent states involved in the anomalous process, it is reasonable to 

assume that the dimensional contribution “per state” is given by 

                                                            
20 1

( )
p

p
N

 


                                                         (7) 

In what follows we take 3.9  . This is the best fit value for recovering the spectra of 

particle masses and gauge couplings, as discussed in [13, 19].   
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CP violation in K-meson physics The first application of (7) may be found in 

understanding CP violation in kaon physics. One way to describe the CP anomaly of K-

mesons is to refer to the structure of the long-lived kaon 0

LK  [6-7]. It differs slightly 

from the CP-odd eigenstate 0 0

2K K K  and is rather represented as 

                                         
0

0 0(1 ) (1 )L K KK K K                                               (8) 

Here K  is a complex deviation parameter whose modulus is  3(2.254 0.083) 10K
    

and which measures the amplitude of CP-violation in mixing of K-mesons [6-7]. On 

account of (4), (5), (7) and on the fact that 0K  is, by definition, a time-reversed replica 

of 0K , we obtain 

 0 0 0(1 )pK K    

(9) 
0 0

0(1 )pK K   

 

Since there are two independent states involved in mixing ( 0K  and 0K ) we take 

2N   and an overall contribution 1 2 1 2

1 2 2 2 2 2p p p p pn n    . Considering the simplest 

possible scenario 1 2( 1)p p   leads to 

                                                 
40 3

2

1
2.162 10

2
 

                                                    (10) 

in close numerical agreement with K .  

Theory of CP violation introduces a second deviation parameter '

K  in connection with 

the occurrence of direct decay channels [6-7, 8-9]. Experimental data shows that 
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'
31.72 10K

K





  or ' 63.878 10K
  . We repeat the same reasoning for '

K  and assume 

4N   since there are four independent states participating in the decay, 

i.e. 0 0, , ,L SK K      . Using 3p   results in a value that matches well the 

magnitude of '

K , that is, 

                                                       
80 6

3

1
4.67 10

4
 

                                                (11) 

Likewise, semi-leptonic decay channels are characterized by four independent states 

( 4N  ), that is, 
0

0 , , ,K K     [6-7]
1
. Using 2p   gives 

                                                        0 3

2, 1.081 10SL                                                      (12)   

This result falls close to the laboratory value reported in the literature 

( ' 3

,Re 1.656 10K SL   ) [6-7]. 

The lepton magnetic moment problem We turn now to the AMM issue. The predicted 

magnetic moment carried by a charged lepton  , ,l e   is [2-4] 

                                                         
2

l l

l

e S
g

m
                                                           (13) 

in which 1
2

S   represents the lepton spin, lm  the lepton mass and lg  its gyromagnetic 

ratio. The cumulative contribution of quantum fluctuations leads to a small deviation 

from the Dirac value 2lg   that is parameterized by the anomalous magnetic moment: 

                                                          
1

( 2)
2

l la g                                                          (14)  

                                                 
1
 Here, leptonic doublets ( )ee   and ( )ee   are not included in the count on the assumption that their 

contribution to CP violation may be safely ignored to a first-order approximation. 
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This quantity can be accurately measured in experiments and, through the perturbative 

framework of SM, precisely determined. The difference between experiment and theory 

( OBS SM

l l la a a   ) provides a stringent test of SM at its quantum loop level. The 

contribution SM

la is generally expected to scale linearly with 2( )l

NP

m


, where NP  

stands for the scale above which the “new physics” sector of SM is likely to emerge [2-4]. 

It is thus apparent from these remarks that a , a  are a much more sensitive signal for 

NP effects on or above the NP  scale, since 2 4( ) 4.275 10
e

m

m
    and 

2 7( ) 1.209 10
e

m
m

   . 

By definition, the magnetic moment of leptons depends on ratio ( )e
m

. As a result, 

departures from 2lg   are linked to quantum processes that distort the relative 

distribution of charge and mass. Since both charge and mass are scale-dependent, the 

gyromagnetic ratio depends also on the observation scale. From the standpoint of RG, 

they represent observables that “run” with the observation scale   according to the flow 

equation 

                                   2

1 2 3( ) ...l l
a l l l

da da
a d d a d a

d dt
 


                                       (15) 

in which id  ( 1,2,3...)i  denote expansion coefficients and 
0

log ( )t 


 stands for the 

sliding scale. Analysis of the RG flow for couplings and masses in the presence of a 

generic control parameter reveals the onset of a scaling pattern near the chaotic attractor 

of the flow [13, 20]. This fact is consistent with the universal scenario for transition to 
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chaos in unimodal maps [18, 20]. On this basis, we posit that OBS SM NPa a a a     

obeys a scaling relationship similar to (7) 

                                                        
( )2

0

n l

la a 


                                                           (16)   

where ( ) 1n l   is a natural index associated with each lepton flavor " "l . By analogy with 

(7), the ratio of consecutive terms of the lepton family can be presented as 

                                                     
(2 )

1

1
( )

l

l

l

a

a N










                                                       (17)                                                                                                   

Here, 2N   since there are two participating states, ,e   and ,  . Table 1 

summarizes the wealth of current knowledge on lepton anomalous moments, along with 

their respective references. OBSa  denotes the „observed‟ data, whereas SMa represents the 

SM values computed according to [2-4, 21-23, 24-27]. 

Lepton flavor OBSa  
SMa  

OBS SMa a a    

e  121159652188.3 10
[21] 0.0011596521859

[22] 125.05 10  
  11116592080 10

[23] 11116591858 10
[4] 1022 10  

 

 
  

 

 

0.052 < OBSa <0.013
[24]

  8117721(5) 10
[25] unknown 

0.018(17)OBSa  
[26] 8117721(5) 10

[25] unknown 

0.007 < OBSa <0.005
[27] 8117721(5) 10

[25] unknown 

 

Tab. 1: Observed and computed spectrum of lepton magnetic moments  

 

The set of values for ea  and a  are known to a great degree of precision [2-4, 21-23]. 

Hence taking ( , ) 2l e    and applying (17) to the first two components of the charged 

lepton triplet yields 

( , )21
( )
2

l e

ea

a










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It follows from these arguments that ( , ) ( , ) 1 3l l e      and the estimate of the  -

lepton magnetic moment is given by 

                                   3

8

1
( ) 2.179917 10
2

OBS
a

a a


 








                                          (19)       

A quick glance at Tab. 1 shows that this prediction complies with the range of 

experimental data recently reported in [24-27]. Narrowing the range a  through new 

rounds of high-precision tests on the  -lepton will either confirm or refute the validity of 

(19). 

Concluding remarks In summary, our work is based on the premise that the postulate of 

unitary evolution is likely to break down either near the Fermi scale or the “new physics” 

(NP) scale. Anomalous behavior emerges as a direct manifestation of this far-from-

equilibrium setting whose adequate description requires the use of fractal operators. 

Fractional dynamics suggests a straightforward explanation of CP violation in the kaon 

sector and of the AMM problem. Invoking RG equations leads to the conclusion that the 

spectrum of lepton magnetic moments follows a scaling pattern. The predicted moment 

of the  - lepton is found to fall in line with current experimental data.  Main results are 

tabulated below.  

We caution that our model can be best qualified as “work in progress”. Parallel efforts are 

needed to either disprove or expand these preliminary findings. In particular, it is 

interesting to evaluate if a similar approach may explain the long-standing puzzle known 

as the “strong CP problem” of particle physics [28]. Can one cancel the  -vacuum angle 

of quantum chromo-dynamics (QCD) through the combined use of (5), (6) and of fractal 

operators? It is also instructive to determine if our model can generate predictions that 
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comply with recent laboratory data on B-meson decays and their CP violating effects. We 

plan on reporting these developments in a sequel study. 

 

Name Parameter Behavior Predicted Actual 

 

K-meson 

mixing 

 

 

K  

 

 
41( )( )

2
   

 

 

 

         32.162 10  

 

 

 

   32.280 10  

 

K-meson 

decay 

 

 

'K  

 

 
81( )( )

4
   

 

 

 

        64.670 10  

 

 

 

   63.878 10  

 

Semileptonic 

 

K-meson 

  

decay 

 

 

 
'

,Re K SL  

 

 

 
41( )( )

4
   

 

 

 

         31.081 10  

 

 

 

     31.656 10  

 

Magnetic 

moment  

 

ea

a




 

 

 
41( )( )

2
   

 

 

         32.295 10  

 

 

   32.162 10  

 

Magnetic 

moment 

 

a

a








 

 

 
81( )( )

2
   

 

 

0.007 0.005EXPa    

 

 
32.180 10PRa
   

 

Tab 2: Summary of predicted versus actual parameters 
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