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Abstract

We suggest that the electron is a wave in the whole process between the
electron gun and the sensor. Between the two-slit and the sensor, the following
two phenomena happen to the waves: interference and Fraunhofer diffraction.
Due to these two phenomena, a considerably sharp shape of wave is finally made
in front of the sensor, and a bright spot appears on the sensor. The experiment
result that a bright spot appears at random can be explained by the above-
mentioned two phenomena and the “fluctuation” of the potential energy that
the filament of the biprism makes. All are the wave motion phenomena, and,
put simply, the particle called an electron does not exist.

1. Introduction

Richard Feynman once said that the double-slit experiment, which clearly
shows both the particle and the wave nature of matter, contained the “heart
of quantum mechanics” and was its “only mystery”. Tonomura et al1 actually
conducted the two-slit experiment using an electron in an advanced research
laboratory at Hitachi Limited, although it had been said that only a thought ex-
periment (Gedanken experiment) was possible. This experiment was explained
by the Copenhagen interpretation.

Tonomura et al writes:“According to the interpretation in quantum mechan-
ics, a single electron can pass through both of the slits in a wave from so-called
“probability amplitude” when the uncertainty of the electron position in the
wall plane covers the two slits, and when no observation is made of the elec-
tron at either one of the slits. The electron is then detected as a particle at a
point somewhere on the screen according to the probability distribution of the
interference pattern.”1 This is the so-called Copenhagen interpretation.

The purpose of our study is to object to the Copenhagen interpretation
and to explain this experiment by only waviness. Our analysis differs from the
Copenhagen interpretation in that the wave function of Schrodinger equation is
not “probability amplitude” but a “real wave”.

2. The theory of two-slit experiment in advanced research
laboratory, Hitachi Limited; Tonomura et al1.

The biprism consists of two parallel grounded plates with a fine filament
between them, the latter having a positive potential relative to the former. The
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electrostatic potential is given by V (x, z) and the incoming electron wave by
exp i (kzz), the deflected wave is given by

ψ (x, z) = exp i
(
kzz −

me

h̄2kz

∫ z

−∞
V (x, z′) dz′

)
, (1)

The two waves having passed on each side of the filament can be approximated
by exp i (kzz ± kxx) up to a constant factor, where

kx = − me

h̄2kz

∫ ∞

−∞

(
∂V (x, z′)

∂x

)
x=a

dz′, (2)

and the symmetry V (x, z) = V (−x, z) has been taken into account. This can
be interpreted classically also:
−e [∂V (x, z′) /∂x]x=a is the x component of force exerted on the electron. Its
integral with respect to dz/vz = dt (vz = h̄kz/m) gives the impulse imparted
to it, which is the same in absolute value but reversed in sign, depending on
which side of the filament the electron passes. If the two waves overlap in the
observation plane to give

ψ (x, z) = exp (ikzz) [exp (−ikxx) + exp (ikxx)], (3)
then this leads to the interference fringes

|ψ (x, z)|2 = 4 cos2 kxx. (4)
The Copenhagen interpretation has concluded that ψ (x, z) is the “probability
amplitude”.

3. Discussion

3.1 Alternative explanation to Copenhagen interpretation: Waviness

The first point to be discussed is, in this experiment, the source of fluctua-
tion is potential energy made by the filament at the center of biprism and the
electrode. (For details please refer to 3.2 The reason why the potential energy
made by the filament of biprism fluctuates.) In a word, the source of fluctuation
is V (x, z′) of expression (1)

ψ (x, z) = exp i
(
kzz −

me

h̄2kz

∫ z

−∞
V (x, z′) dz′

)
of the Tonomura thesis. Because this fluctuation is a Brownian motion as con-
sidered later, it is not symmetric. Because this potential energy fluctuates, kx

of the expression (2)

kx = − me

h̄2kz

∫ ∞

−∞

(
∂V (x, z′)

∂x

)
x=a

dz′

of the Tonomura thesis is a different value in each wave that has occurred from
biprism. Expression (2) means that kx is determined by the accumulation of the
impulse that the electron wave received from potential energy when it went in
the biprism. In general, because potential energy fluctuates, the impulse that
the first wave received in the biprism and the impulse that the second wave
received are different. As a result, the value of kx is different according to each
wave. The interference fringes fluctuate at time because there is kx also in the
expression (4) of the Tonomura thesis

|ψ (x, z)|2 = 4 cos2 kxx
that shows interference fringes. As shown by the expression (3)
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ψ (x, z) = exp (ikzz) [exp (−ikxx) + exp (ikxx)]
of the Tonomura thesis, there is kx in the wave function that is reaching the
screen from right and left biprism. So the phase of wave fluctuates because it
receives the influence of fluctuation of potential energy.

The appearance of the interference when wave number kx fluctuates is seen
as follows.

By the expression (3) of the Tonomura thesis, the wave number vector of
the wave that comes from the left can be written as (kx, 0, kz) and the wave
number vector that comes from the right, (−kx, 0, kz) .

In general, because potential energy V (x, z′) doesn’t fluctuate symmetri-
cally, neither kx from the left nor kx from the right are equal. Then, the wave
number vector of the wave that comes from the left is written as (kx (L) , 0, kz),
and the wave number vector of the wave that comes from the right is written
as (−kx (R) , 0, kz). It becomes a different value because of the first wave, the
second wave, and the third wave even if paying attention only to kx (L) ( paying
attention only to kx (R) ).

Figure 1. When the wave number kx (L) that comes from the left and the
wave number kx (R) that comes from the right are equal:

Bright spot appears at the center of the screen.

Figure 2: When the wave number kx (R) that comes from the right is larger
than the Wave number kx (L) that comes from the left:
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Bright spot shifts left.

Figure 3: When the wave number kx (R) that comes from the right is smaller
than the Wave number kx (L) that comes from the left:

Bright spot shifts right.

We suggest that this is the mechanism by which the bright spot is observed
at a random position. Because the potential energy that the filament makes
fluctuates, the wave number kx (L) of the wave that passes the left prism some-
times becomes large and at other times it becomes small. The wave number
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kx (R) of the wave that passes the right prism is also similar. As a result, the
position that two waves strengthen each other is different on each occasion as
shown in the above figure. In current quantum theory, only the case of Figure
1 is considered, and it is said that the place enclosed in the following figure is a
position of the interference fringes.

It follows from this that our interpretation is different from the current
interpretation of the quantum theory in that it becomes a very dynamic image
like two moving searchlights independently scattering waves of light into the
night sky. On the other hand, the image of current quantum theory is very
static.

The second point that requires clarification is why it is observed as “a spot”
in the experiment when the electron wave is weakened. The reason why it is
observed as “a spot” is that the effect of the diffraction (so-called Fraunhofer
diffraction) exacerbates the above-mentioned interference because the opening
of biprism is not the ideal one like the delta function but has some size in
an actual experiment. Therefore, strength of the electron wave on the screen
becomes narrowed shape like the interference fringes shown by cos function
narrowed by sinc function (sinx/x).

(Refer to the figure below. A part of the numerical value is excerpted from
the Tonomura thesis.)
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Strength of the electron wave on the screen becomes shaped like a sliced moun-
tain. There were an estimated 400 slices in the Tonomura experiment. In
addition, only a very narrow area (center part of Airy disk so-called) in the top
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of a mountain will reflect because the pictures in this experiment were taken
with very limited sensitivity. It is concluded that this is the bright spot observed
on the screen.

Furthermore, the top of the mountain shakes at random due to the above-
mentioned fluctuation. The peak of the distribution of the Fraunhofer diffraction
appears at random because the potential energy (electric field) fluctuates and
the electron wave fluctuates. Also, because the electron wave discharged from
the electron gun is weak, only the part of the peak is taken of a picture.

Up to this point We have explained the two-slit experiment by only waviness.

3.2 The reason why the potential energy made by the filament of
biprism fluctuates.

The reason why the potential energy made by the filament fluctuates is as
follows. If vz is deleted from

dz/vz = dt, vz = h̄kz/m
that exists between the expression (2) and the expression (3) of the Tonomura
thesis, it becomes

m

h̄kz
dz = dt. (Refer to Appendix A “Brownian motion of the

path of the electron” for an accurate expression.) If this expression is substituted
for the expression (1) of the Tonomura thesis, it becomes

ψ (x, z) = exp i
(
kzz −

1
h̄

∫ t

t0

eV (x, z′) dt′
)

.

And the expression (2) of the Tonomura thesis becomes

kx = − 1
h̄

∫ t

t0

e

(
∂V (x, z′)

∂x

)
x=a

dt′.

kx fluctuates as explained in the Appendix A. In the Tonomura thesis, because
the kinetic energy of an incidence wave

h̄2k2
z

2m
=

p2
z

2m
=

1
2
mv2

z

and the kinetic energy of the scattered wave
h̄2k2

2m
=

p2

2m
=

1
2
mv2 (Here, v = (vx, 0, vz))

are omitted, the wave function of Schrodinger equation is originally written

ψ (x, z) = exp i
(
kzz −

h̄k2
z

2m
t1 +

1
h̄

∫ t

t1

[
1
2
mv2 − eV (x, z′)

]
dt′

)
= exp i

(
1
h̄

∫ t

t1

[
1
2
mv2 − eV (x, z′)

]
dt′

)
exp i

(
kzz −

h̄k2
z

2m
t1

)
.

t1 is time until wave reaches biprism. (Refer to Appendix B “Accurate discussion
by Path integral formulation” for an accurate expression that uses the Path
integral formulation.)

When reading this expression from the right to the left, this expression can
be read that when the plane wave that was emitted from the source reaches
the biprism, it is scattered by the potential energy of biprism, and it faces the
screen. Because there is
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exp i
(

1
h̄

∫ t

t1

1
2
mv2dt′

)
in this expression, the leveled operation enters the potential energy

Φ = exp
(
− i

h̄

∫ t

t1

eV (x, z′) dt′
)

that fluctuates at random or the wave

ψ1 = exp i
(
− 1
h̄

∫ t

t1

[eV (x, z′)] dt′
)

exp i
(
kzz −

h̄k2
z

2m
t1

)
that fluctuates at random by this potential energy. (For details please refer
to 3.3 The reason why the kinetic energy exponential part corresponds to the
normal distribution function.) In other words, it is

ψ (x, z) = E [ψ1] = E

[
exp i

(
− 1
h̄

∫ t

t1

[eV (x, z′)] dt′
)

exp i
(
kzz −

h̄k2
z

2m
t1

)]
.

E [· · ·] is to mean the expected value is taken.
The solution ψ of Schrodinger equation is the average (expected value) of

this random field Φ or the average of the wave ψ1 that fluctuates at random.
The expected value is taken by the normal distribution function in case of non-
relativity as understood later. (The normal distribution function is one that the
frequency of the random walk (Brownian motion) is infinitely increased. ) In
other words, fluctuation of Φ can be modeled by the Brownian motion. Φ or
potential energy V (x, z′) fluctuates like this.

Put simply, the wave function ψ that is the solution of Schrodinger equation
is an average of the fluctuating wave ψ1, and the approximate one.

To quote David Bohm: “Fluctuation of the field is not constant but at
random. The value of the field described by the quantum theory is the one
leveled during a certain time. Fluctuation of the field originates in the more
subordinate level than the level that the quantum mechanics targets. This is just
the same as Brownian motion of small liquid drop originates in an atomic level
that exists in more subordinate position. And, like Newton equation expresses
average behavior of liquid drop, Schrodinger wave equation expresses average
behavior of the field.”2

In other words, the two-slit experiment in advanced research laboratory,
Hitachi, Ltd is a splendid experiment that visualizes and proves the quantum
field fluctuation that David Bohm pointed out.

The quantum field fluctuation is the one that exists in a deeper level than
the wave function of Schrodinger equation.

3.3. The reason why the kinetic energy exponential part
corresponds to the normal distribution function.

It is because of becoming the normal distribution function when the part of∫
Dx exp

(
i

h̄

∫
1
2
mv2dt

)
that corresponds to the kinetic energy is transformed a little. (This is a tech-
nique that Feynman often does in “Quantum mechanics and path integrals”3,
etc.)
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√
m

2πh̄i∆t
exp

(
− m

2h̄i∆t
(xj+1 − xj)

2
)

shows it. When this and normal distribution function
1√

2πσ2t
exp

(
− x2

2σ2t

)
are compared, if it is assumed

σ =

√
h̄

m
and makes time an imaginary number, these are corresponding. Integrate the
kinetic energy with respect to time, put it on the shoulder of exponential, make
time an imaginary number, then this exponential part becomes a normal distri-
bution function. It is an interesting point of Feynman’s path integrals.

In general, the expected value E [f (ξ)] of the function f (ξ) shown by the
random variable ξ that fluctuates by normal distribution is

E [f (ξ)] =
∫

1√
2πσ2t

exp
(
− ξ2

2σ2t

)
f (ξ) dξ.

When path integrals of Feynman is used, the solution ψ of Schrodinger equation
can be generally solved with

ψ = E

[
exp

(
− i

h̄

∫ t

t0

V (x (t′)) dt′
)
ψ (t0)

]
.

Getting the expected value is due to the fact that the potential energy fluctuates.
This is an expression of so-called Feynman-Kac (Feynman-Kac-Nelson) formula.
(Please refer to “Techniques and Applications of Path Integration”4.)

4. Conclusion

In the two-slit experiment, the wave number vector of each wave that occurs
from biprism fluctuates by normal distribution. The wave that occurred from
biprism is launched in various directions for this fluctuation. This fluctuation
is expressed by the probability distribution of normal distribution.

In conclusion, We should note that while in present quantum mechanics it is
the wave function that determines the probability distribution of the electron,
our observations show that it is not the wave function but this kinetic energy
exponential part that determines the probability distribution. As a result, wave
motion itself fluctuates. Furthermore, the bright spot observed on the screen is
not “an electron” but the peak of the distribution of the Fraunhofer diffraction.
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Appendix A “Brownian motion of the path of the electron”
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Because we cannot differentiate the path in Feynman’s path integrals (Or,
you may say the path of the electron) here and there, we must not express as
dz/vz = dt or dz = vzdt.
It is originally

dz = vzdt+

√
h̄

m

√
dtξ

ξ · · ·Standard regular random variable.
So, it is necessary to consider a Brownian motion paragraph. Therefore, it
becomes

m

h̄kz
dz =

m

h̄kz
vzdt+

m

h̄kz

√
h̄

m

√
dtξ = dt+

1
kz

√
m

h̄

√
dtξ.

So the impulse that electron receives is not
−e [∂V (x, z′) /∂x]x=a dt

but

−e [∂V (x, z′) /∂x]x=a

(
dt+

1
kz

√
m

h̄

√
dtξ

)
.

This is the cause of fluctuation. The momentum of electron fluctuates by this
fluctuation of impulse, and the wave number vector of electron also fluctuates.

Appendix B “Accurate discussion by Path integral formulation”

ψ =
∫
DxDp exp

(
i

h̄

∫
[ṗx−H (p, x)] dt

)
· · ·Hamiltonian Path Integrals

ψ =
∫
Dx exp

(
i

h̄

∫
L (x, ẋ) dt

)
· · ·Lagrangian Path Integrals

K (b, a) =
∫ b

a

Dx (t) e(i/h̄)S[b,a] =
∫ b

a

Dx (t) exp
(
i

h̄

∫ tb

ta

dt
[m

2
ẋ (t)2 − V (x)

])
· · ·Propagator

(Wave function)
Wave function that reaches a point b in slit from source a

K (b, a) =
∫ b

a

DzDpz exp
(
i

h̄

∫ tb

ta

[
pz ż −

p2
z

2m

]
dt

)
=

∫ b

a

Dz exp
(
i

h̄

∫ tb

ta

1
2
mv2

zdt

)
Here, pz = h̄kz

Wave function that reaches a point on the screen from a point in slit

K (c, b) =
∫ c

b

DxDzDpxDpz exp
(
i

h̄

∫ tc

tb

[
pxẋ+ pz ż −

p2
x

2m
− p2

z

2m
− V (x, z)

]
dt

)
=

∫ c

b

DxDz exp
(
i

h̄

∫ tc

tb

[
1
2
mv2

x +
1
2
mv2

z − V (x, z)
]
dt

)
Therefore, if the idea of Feynman’s path integrals is used, the product of each
wave is added by the width of the slit and becomes a wave function that reaches
the screen from the source.

K (c, a) =
∫

xb

dxbK (c, b)K (b, a)

=
∫

xb

dxb

∫ c

b

DxDz exp
(
i

h̄

∫ tc

tb

[
1
2
mv2

x +
1
2
mv2

z − V (x, z)
]
dt

) ∫ b

a

Dz exp
(
i

h̄

∫ tb

ta

1
2
mv2

zdt

)
=

∫
xb

dxb

∫ c

b

DxDz exp
(
i

h̄

∫ tc

tb

[
1
2
mv2

x +
1
2
mv2

z − V (x, z)
]
dt

) ∫ b

a

DzDpz exp
(
i

h̄

∫ tb

ta

[
pz ż −

p2
z

2m

]
dt

)
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The phase of the wave function fluctuates when potential energy V (x, z) fluc-
tuates, and, as a result, the position of the top of mountain of the interfered
wave fluctuates.
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