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Abstract 

 

Starting from the nonlinear dynamics of Renormalization Group (RG) equations, we 

show that the spectrum of lepton magnetic moments follow a Feigenbaum-like scaling 

pattern. Based on this approach, we find that the predicted moment of the  - lepton falls 

in line with current experimental data.  
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1. Introduction 

The Standard Model for particle physics (SM) is a solid theoretical framework that has 

impressively passed a large number of high-precision tests. For example, measurements 

of the anomalous magnetic of the electron ( ea ) and muon ( a ) have reached the 

astonishing relative precision of 0.7 parts-per-billion and 0.5 parts-per-million, 

respectively [11]. This unsurpassed level of experimental precision has revealed a minute 

yet non-vanishing discrepancy between the experimental and SM values of a  [9]. It is 

generally assumed that this difference could be tracked down to an experimental error, an 

incorrect evaluation of hadronic loop-diagrams or a hint for “new physics” (NP), beyond 
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the energy range of SM. While ea  is relatively insensitive to the weak and strong sectors 

of SM, a  contains contributions from all SM sectors. As a result, precise tests of a  are 

thought to provide an excellent opportunity to reveal or constrain the signature of NP, 

including, for example, supersymmetry and related field models [10-12, 16] 

Drawing on previous studies where nonlinear dynamics and complexity assume the 

leading role [13-15], we explore in this work a scenario in which lepton magnetic 

moments are organized in a hierarchical pattern. The rationale for this pattern stems from 

the universal scaling behavior of RG equations near the onset of chaos [13-15]. This 

conjecture enables us to predict the magnetic moment of the  - lepton and to further 

compare it with its most updated experimental values. 

The paper is structured as follows: section 2 contains a brief overview on the theory of 

anomalous magnetic moment of leptons. Section 3 introduces general aspects related to 

the chaotic dynamics of the renormalization group flow (RG) and the emergence of 

Feigenbaum scaling. The hierarchical pattern of lepton moments and the predicted value 

of the  - lepton moment form the topic of section 4. Concluding remarks are presented 

in the last section. 

2. Lepton magnetic moment: a brief overview 

For a charged lepton  , ,l e   , the Dirac equation predicts the following magnetic 

moment [11-12] 
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in which 1
2

S   represents the lepton spin, lm  the lepton mass and lg  its gyromagnetic 

ratio. The cumulative contribution of quantum fluctuations leads to a small deviation 

from the Dirac value 2lg   that is parameterized by the anomalous magnetic moment: 

                                                       
1

( 2)
2

l la g                                                          (2)  

This quantity can be accurately measured in experiments and, through the perturbative 

framework of SM, precisely predicted. The difference between experiment and theory 

( OBS SM

l l la a a   ) provides a stringent test of SM at its quantum loop level. The overall 

SM contribution to la  may be split into three independent components 

                                                SM QED EW Had

l l l la a a a                                                   (3) 

denoting the QED, electroweak and hadronic sectors, respectively. The contribution 

SM

la is generally expected to scale linearly with 2( )l

NP

m


, where NP  stands for the 

energy scale that corresponds to the onset of NP [10-12]. It is thus apparent from these 

remarks that a , a  are a much more sensitive signal for NP effects on or above the NP  

scale, since 2 4( ) 4.275 10
e

m

m
    and 2 7( ) 1.209 10

e

m
m

   . 

The theory of the lepton anomalous magnetic moment is an active topic of research in 

particle physics. It includes multi-loop calculations, precision low-energy hadron physics, 

isospin violations and scattering of light by light [1-8, 10-12]. Current precision of the 

experimental value for a  has significantly improved in the past several years thanks to 

experiments conducted at Brookhaven National Laboratory [12, 16]. By contrast, 

measurement of a  is a significantly more difficult task due to the short lifetime of the 
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 -lepton. With the current testing equipment and technology, one can only determine the 

most probable range associated with a [11, 12]. 

3. Chaotic dynamics of the RG flow 

By definition, the magnetic moment of leptons depends on ratio ( )e
m

. As a result, 

departures from 2lg   are linked to quantum processes that distort the relative 

distribution of charge and mass. Since both charge and mass are scale-dependent, the 

gyromagnetic ratio dependents also on the observation scale. From the standpoint of 

Renormalization Group (RG) theory, they represent observables that “run” with the 

measurement scale   according to the equation 

                                2

1 2 3( ) ...l l
a l l l

da da
a d d a d a

d dt
 


                                           (4)           

in which id  ( 1,2,3...)i  denote expansion coefficients and 
0

log( )t



 is the sliding 

scale defined relative to an arbitrary reference 0 . Analysis of the RG flow for couplings 

and masses in the presence of a generic control parameter reveals the onset of a scaling 

pattern near the chaotic attractor of the flow [13-15]. This is consistent with the universal 

scenario for transition to chaos in unimodal maps ([13-15] and Appendix). Hence, with 

regard to (4), we posit that OBS SM NPa a a a     obeys a scaling relationship described 

by the geometric progression 
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where   is a constant (identical to the Feigenbaum constant 4.669...   only when the 

RG flow (4) is strictly quadratic) and ( ) 1n l   is a natural index associated with each 

lepton flavor. For two consecutive terms in the lepton family we have (see (A9)) 

                                                      
(2 )

1

l

l

l

a

a







 


                                                       (6)                                                                                                   

Here, constant   parameterizes our “ignorance” with regard to the physics on or above 

the threshold scale  . It is introduced to enable a closer numerical match between the 

left hand side of (6) and the scaling factor 
(2 )l




. 

4. Hierarchical structure of magnetic moments 

Table 1 summarizes the wealth of current knowledge on lepton anomalous moments, 

along with their respective references. OBSa  denotes the ‘observed’ data, whereas 

SMa represents the Standard Model values computed according to (3). 

Tab.1 

Lepton flavor OBSa  
SMa  

OBS SMa a a    

e  121159652188.3 10
[1] 0.0011596521859

[2] 125.05 10  
  11116592080 10

[3] 11116591858 10
[4] 1022 10  

  

 

 

0.052 < OBSa <0.013
[5]

  8117721(5) 10
[6] ? 

0.018(17)OBSa  
[5], [7] 8117721(5) 10

[6] ? 

0.007 < OBSa <0.005
[8] 8117721(5) 10

[6] ? 

 
 

The set of values for ea  and a  are known to a great degree of precision [1-8, 11-12]. 

Hence applying (6) to the first two components of the charged lepton triplet yields 
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It follows from (6) and (7) that ( , ) ( , ) 1 3l l e      and the estimate of the  -lepton 

magnetic moment is given by 

                                     
3
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
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A quick glance at Tab. 1 shows that this prediction complies with the range of 

experimental data recently reported in [5-8]. Narrowing the range a  through new 

rounds of high-precision tests on the  -lepton will either confirm or refute the validity of 

(8). 

5. Concluding remarks 

The starting point of this brief report was the universal scaling behavior of RG equations 

near the onset of chaos. On this basis it was postulated that the magnetic moments of 

leptons are organized in a hierarchical pattern. The predicted moment of the  - lepton 

was shown to be consistent with recent measurements. Future testing and data analysis 

are required to validate, improve or falsify this prediction. 

6. Appendix: RG flow equations in the presence of perturbations and the transition to 

dynamical chaos.  

For convenience, we re-iterate here the line of arguments developed in [14]. The 

parameters of the Standard Model   iσ  ; 1,2,...,i n  evolve according to the free-

flow equations  

                                              ( )i i
i i

d d

d dt

 
  


                                                    (A1)                                                                                                              
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In what follows, we consider that a generic set of perturbations acts as control parameter 

that drives the dynamics described by (A1). In the presence of perturbations ( , )i i i t    

[A1] may be written as 

                                               [ , ( , )]i
i i i i

d
t

dt


                                                      (A2) 

For the sake of concision and simplicity, we limit the analysis to the simplest case of a 

single stationary perturbation having constant amplitude 

                                                      ( , )i i t                                                             (A3)  

Under these circumstances, (A2) assumes the form of a generic autonomous system of 

ordinary differential equations (ODE) 

                                                    ( , )i
i i

d

dt


                                                         (A4)  

Based on the line of arguments developed in [17], we proceed with the following 

assumptions: 

a1) (A4) is a smooth family of nonlinear autonomous systems of ODE in three-

dimensional phase space M  that is dependent on the single control parameter 

 3( R , I R)M     . 

a2) (A4) are analytic functions of  . 

a3) the limit cycle 0 ( , )t   of period ( )T   represents a solution of (A4) for all I .  

a4) the limit cycle 0 ( , )t   is stable for 0   and it becomes unstable at 0   after a 

period-doubling bifurcation created as a result of crossing the imaginary axis by one of 

the Floquet exponents.  
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According to the theorem 4.4 of [17], the first stage of the transition to chaos driven by 

the continuous variation of 0   represents a Feigenbaum cascade of period-doubling 

bifurcations for 0 ( , )t  . Numerous examples of this scenario [17] show that the 

sequence of critical values n , Nn , leading to the onset of super-stable orbits, satisfies 

the geometric progression 

                                                  
n

n  


                                                            (A5) 

Based on a2), we expand 0 ( , )t  around the critical value of    that leads to fully 

developed chaos  

          
2 2

0 0
0 0 2

( , ) ( ) ( , )
( , ) ( , ) ( ) ...

2

n
n n

n n

t t
t t

 

     
     

 
 


 

  
    

 
          (A6)      

This yields 

          
22

0 0
0 0 2

( , ) ( , )( )
( , ) ( , ) ( ) ...

2

n
n

n

n n

t t
t t

 

   
    

 
 






 
    

 
               (A7)  

For 2ln  , where the generic index is 1l  , the ratio of two consecutive terms in the 

series then takes the form  

                          
0, 0 0

( 1)

0, 1 0 1 0

( )( , ) ( , )

( , ) ( , ) [ ]

n k

kn n k

n k
n n kk

ct t

t t c

    

     





 

  

 
 

  




                           (A8) 

Under the assumption 1 0c   and ( )
n

O 


  corresponding to 1l , we obtain  

                                                    
1 ( 2 )0,2

0,2

l
l

l





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


                                                      (A9) 
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