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| nt roducti on.

The present work includes sone of the author's

ori gi nal

researches on the integer solutions of equations

and |inear systens:

1

The notion of "general integer solution" of a

| inear equation with two unknowns is extended to
i near equations with n unknowns and then, to

| i near systens.

The proprieties of the general integer solution
are determned (both of a linear and systen)
Seven original integer algorithnms (two for

i near equations and five for |inear systens)
are presented. The algorithnms are strictly
denonstrated and an exanple for each of themis
given. These algorithns can be easily

i ntroduced in a conputer

| NTEGER SCLUTI ONS OF LI NEAR EQUATI ONS

Definitions and properties of the integer solutions

(i nteger solution) of linear equations (1l.e):

Let 1.e:



(1) O axi = b, with all a = 0 and b fromz
=1

Again, let h ¢ Nbe, and the functions f; : Z" - Z,

i =1, 1,n.

Definition 1
0

Xi = Xi, 1 =1,n, is the particular integer solution
0 n 0
of equation (1), if all x; ¢ Zand O ax; = b.
=1

Definition 2

xi = fi(ky, ... kn), i = 1,n, is the general integer

solution of equation (1) if:

n
(a) O afi (ki, ... kp) = b  V(ky, ... kn) e Z
i=1
. 0 0 .
(b) Irrespective of fi(x1:, ... Xn) thereis a
0 0
particul ar integer solution for (1) (ki, ... kpn) e Z" so
0 0 0 -
that x; = fi (ki, ... kn) for all i =1,n.

W w il further see that the general integer solution
can be expressed by linear functions.

o=

W consider for 1 <i <n, the functions f; =

] =1

Cijkj + di with all c¢ij, di € Z



Definition 3

A = (cij)i,j is referred to as the matri x associ at ed
to

t he general solution of equation (1).

Definition 4

The integers ki, ... ks, 1 <s < h, are independent
if all the corresponding colum vectors of matrix A are

linearly independent.

Definition 5

An integer solutionis s - tinmes undetermned if the
maxi mal nunber of i ndependent paraneters is s.
Theorem 1. The general integer solution of equation

(1) is (n-1) - times undeterm ned.

Pr oof

We suppose that the particular integer solution is of

the form

r —
(2) xi = O iiePe+vi, i = 1,n, wthall uje, VvieZ
e=1

Pe = are paraneters fromZ, while a<r <n - 1
0 0



Let (x1, ... Xn) a general integer solution of equation
(1) (we are not interested in the case when the equation

does not accept integer solution). The solution

0 (I
x,-:anlj+x,- j:1,n-1
n-1 0
Xn = '(O aJkJ - Xn)
] =1

is (n- 1) - times undetermned (it can be easily checked
that the order of the associated matrix is n - 1). Hence,
there are n - 1 undeterm ned solutions. Let, in the

general case, a solution n - 1 tinmes be undeterm ned:

nil I
x;, = O cijk; + d; i =1, n
j=1

, with all Cij,di c Z.

The case when b = 0

n n
Then O ajx; = 0. It follows O ax; =
=1 =1
n n-1 n n-1 n,
= O a (O cjkj+di) = O a O cikj + Oad =0.
i =1 j =1 i =1 j=1 i =1



For ki =1and kj =0, j #jo it follows O aicij = 0.
=1

Let the honogenous |inear systemof n equations with n

unknowns be:

n ([T
O X|C|J = O, J = 1,n = 1,
=1
n
O Xidi =0
i =1
([
whi ch, obviously accepts the solution x; = aj, | =1,n

different fromthe trivial one. Hence t he determ nant of

the systemis zero, i.e., the vectors G = (cy, ... GCy)',
(T
i =1,n- 1, D=(dy, ..., dy)' are linearly dependent.

But the solution being n - 1 tinmes undetermned it follows

([T
that G, ] =1,n - 1 are linearly independent. Then (G
Ci.1) determnes a free subnodule Z of the order n - 1
in Z, of solutions for the given equation.
Let us see what can be obtained from(2). W have:
n n

P P r/
0= O aiXi = O ai ( O UjePe + Vi). As above,
i =1 i =1 e=1

we obt ai n:



n )
O avi =0 and O ajuije = 0; and simlarly, the
i =1 e=1 0

vectors U, = (U, ..., Unn) are linearly independent,
M M
h=1,r. U, h=1,r and V = (v, ..., v, are

particul ar integer solutions of the honbgenous |i near

equat i on.

Subcase (al)

(M
U h =1,r are linearly dependent. It gives

{U, ..., U} =the free subnodule of order r in z" of
solutions of the equation. Hence, there are solutions
from{Vy, ..., Vii} which are not from{U, ..., U}, this
contradicts the fact that (2) is the general integer

sol uti on.

Subcase (a2)

(M
Un, h =1,r, Vare linearly independent. Then,
{U, ..., U} + Vis alinear variety of the dinension
<n-1=dm{Vy, ..., Vii} and the conclusion can be

simlarly drawmm. The case when b = 0

n n n-1
So, O ax; = h. Then O a ( O cijkj + di) =



i =1 i =1 j=1
n-1n n
= O ( O aicij) ki + O adi =b, Ky, ..., kn1 €
j=1 i=1 i=1
n
e Z"'. As in the previous case we get O ad = b and
i=1
n (T
O ac; =0V = 1,n - 1. The vectors G =
i=1
(T
= (Cij, ..., Cn)', j =1,n - 1, are linearly independent

because the solution is n - 1 tines undeterm ned.

Conversely, if C, ... Cy.1, D (where D= (dy, ..., dn)')
_ n-1
were linearly dependent, it would mean that D= O s;G,
j=1
) n
with all s; scalar; it would also nean that b = O ajdi =
i =1
n n-1 n-1 n
= 0O a( O sjcij) = O sj( O ajcij) = 0. Inpossible
i =1 j =1 j =1 i=1
(3) then {C, ..., G.1} + Dis a linear variety.

Let us see what we can obtain from(2). W have:

n n I r n
b = OaiXi = Oai ( C)Uiel:)e +Vi) = 0O ( C)aiuie)l:)e +
i =1 i =1 e=1 e=1l i=1
n
+ _O ai Vi

=1



n n [
and, simlarly: O avi =b and O ajuj =0, Ve =1,r
i =1 i =1
I
respectively. The vectors Us = (Ui, ..., Une)", e =1,r

are linearly independent because the solutionis r - timnes
undet er m ned.
A procedure like that applied in (3) gives that U,

., U, Vare linearly independent, where V = (v, ...,
vi)'. Then {Ji;, ... U} + V = a linear variety = free
subrmodul e of order r <n - 1. That is, we can find vectors
fromG, ..., G.1 + Dwhich are not from{U, ..., U} +V,
contradicting the "general" characteristic of the integer
nunber solution. Hence, the general integer solutionis n -
1 times undeterm ned.

Theorem 2. The general integer solution of the

n
homogenous |inear equation O ax; =0 (all a ¢ Z\ {0})
i =1

can be witten under the form
n-1 0 O
1, n

(4) Xi = O Cijkj, i =
j=1

(wWith di = ...

dn

0).

Definition 6. This is called the standard form of the

general integer solution of a honbgenous |inear equation.
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Pr oof

We consider the general integer solution under the

n-1 (I
form x; = O ¢;P +di, i =1,nwithnot all d =0. W
j=1

show that it can be witten under the form(4). The

honmogenous equation admts the trivial solution x; = 0,
(o 0 0 i n-1 0
i =1,n. There is (ps, ..., Ppn1) € Z"" so thatO cip; +
] =1
[
+d =0V = 1,n. Substituting: P =k + pj,
(I

] =1,n- 1inthe formfromthe beginning of the
denonstration we will obtain form(4). W have to nention
that the substitution does not dimnish the degree of

(I
generality as P, ¢ Z « kj ¢ Z because j ¢ 1,n - 1.

Theorem 3. The general integer solution of a
nonhonogeneous |inear equation of its associ ated honbgenous
[ inear equation + any particular integer solution of the

nonhonogeneous |inear equation.

Pr oof

n-1 (I
Let x; = O «¢i;kj, i =1,n be the general integer

1=1



11

solution of the associated honbgenous |inear equation and,

(M
again, let x; =vi, 1 =1,n be a particular integer solution

n-1
of the nonhonogeneous |inear equation. Then, xi = O ¢k +
] =1

(M
+vVvi, i = 1,nis the general integer solution of the

n
nonhonbgeneous |inear equation. Actually, O ajx; =
i=1

n n-1 n n-1 n
= O a ( O cijkj +vi) = O a ( O cijkj) + O avi = b;
i =1 ] =1 i =1 ] =1 =1

[
0
if xi =xi, i =1,nis a particular integer solution of the

[m
nonhonogeneous |inear equation, then xi =x - v;, i = 1,n

is a particular integer solution of the honbogenous |i near

0 0 n-1
equation; hence, there is(kiy, ..., kni) e Z"'so that Q
] =1
0 0 (0 ) n-1, 0 0
Cijki = xi - vi, Vi =1n, i.e., O ciki +vi=xi, V=
=1
M
1,n, which was to be proven
n-1 (D
Theorem 4. If x; = O cijk;, i = 1,n, is the genera
=1

i nteger solution of a honpbgenous |inear equation of a

(I
honogenous |inear equation (cCij, ..., Cpn) ~ 1, V, = 1,n -1
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The denonstration is made by reductio ad absurdum |f

Jjo, 1 <jo<n-1, sothat (cy , ..., Cn_ ) ~ dj = +1,
- - 0

=cij dyy with (cy , ..., ¢y ) ~ 1, Vi=Ln

: (M
But xi = Cij i = 1,n represents a particular integer

n n - n
solutionas O ax;, = O ac; =1/d e O ac; =0
i =1 i =1 0 0 i =1 0

[
(because x; = Cij, i =1,nis a particular integer solution

fromthe general integer solution by introducing kjo = 1 and

ki =0, ] # jo). But the particular integer solution

: [Im
Xi = Cij i = 1,n cannot be obtained, by introducing whol e

nunber paranmeters (as it should), fromthe general integer
solution, as, fromthe |linear systemof n equations and

n - 1 unknowns, which is conpatible, we obtain:

n , .
Xxi = Ocijkj +c¢ci; d ki =cij, i =
j =1 0 0 0 0

j #lo

[
1, n

Leaving aside the | ast equation--which is a |inear
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conbi nation of the other n - 1 equations--a Kranerian system

is obtained. It follows:
|C11...Ci' ...C1,n1 |
| ’ |
|Cn-1,1---Cn-1' ---Cn-1,n-1|
d
1
kjo = = [ c Z.
. d;

| C11. .. Cljo djo. ..C1,n-1

| Cn-1, 1. Cn-10j doj .Cn-1,n-1 |

The assunption is false and of the denonstration.

Theorem 5. Considering the equation (1) with

(ai, ..., an) ~ 1, b =0 and the general integer solution
n-1 (0
xi = O cijkj, i =1,nthen (ai, ..., a-.1, &+, ..., &) -~
] =1
(M
~ (Ciz, ..., Cin1), Vi € 1,n. The denonstration is made by

double divisibility. Let io, 1 <io < n be arbitrary but

n-1 .
fixed. xi = O c¢ijjkj. Consider the equation O ajx; =
j=1 ° I #1o
[
= -ai X We have shown that xi = c¢ij, I = 1,nis a

particular integer solution irrespective of j, a <j <
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<n- 1. The equation O ax; = -a ¢; j, obviously,
I =1 o 0

admts the integer solution x; = cij, I = lo. Then

(az, ..., A -1 &, an) divides & Cig j, but, as we
have assunmed that (ai;, ..., an) ~ 1, it follows that

(a1, ..., & -1, @1y an)Dcio,-, irrespective of j.
Hence (ai, ..., & -1, & .1, ..., an) Il Ci s -y Cina),

[Im
Vi e 1,n, and the divisibility in one sense was proven.

I nverse Divisibility

Let us suppose the contrary and say that 3 i1 €

m
e 1,n for which (az, ..., a -1, & +, ..., an ~ di1 = di 2 ~
1 1 1 1
~ (cill, ciln.l); we have consi dered d‘11 and dilz

W thout restricting the generality. dillilz according to
the first part of the denonstration. Hence, 3 d ¢ Z so that

dilz =d e dill, dOo =+ 1.

n-,l n-,l - n )
Xi = O ¢ jkj =dedi: O ¢ jki; Oaxi =0 =0 ax =
j=1 1 bj=1 1 i=1 P2
) n-,l :
=-a X O axi=-a dedi: O ¢ kj, where

1 H 1 1 H-— 1
=l 1 ] =1
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(Cllla L | Ciln-l) ~ 1

The nonhonpgeneous |inear equation O ax; = -a di adnits
1 1

o2l
i nteger solution because &ldil is divisible by

0

(az, ..., & -1, &, an). Let Xi =X, I =11 beits
particular integer solution. It follows that the equation
n 0

O ajxi = 0 admts the particular solution x; = x;,

i=1

[ Xi = dil, which is witten as (5). W show that (5)
cannot be obtained fromthe general solution by integer

nunber paraneters:

n-,l 0
O Cijkj = X, | # I
j =1
nil
d ed ;1 O cijkj =di: (6)
1 le 1

But equation (6) does not admt integer solution because

d ed ; di 1+ thus, contradicting, thus, the "general™
1 1

characteristic of the integer solution
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As a conclusion we can wite:

Theorem 6. Let the honpbgenous |inear equation be:

n
O ax; =0wthall a ¢Z\ {0}, and (ai, ..., a.) ~ 1.
i =1
h 1l
Let x; = O Cijkj, i =1,n be, with all Cij e Z, al | kj
j=1

whol e integer paraneters and h € N, a general integer
solution of the equation. Then,

1° the solution is n - 1 tines undetern ned:;

([T
2°V, =1,n - 1 we have (cCy, ..., Cpn) ~ 1;
([
3%V, = 1,n we have (Ci1, ..., Cini1) ~ (ai, o, a1,
ai+1, ..., an. The proof results from Theorens 1, 4 and 5.

Note 1. The only equation of the form (1) which is
n - times undetermned is the trivial equation O ® x; +
+ ... +0 e x, =0.

Note 2. The converse of theorem6 is not true.

Count er exanpl e:

X1 = - ki + ks

X2 5k, + 3k>

X3 = 7k, - Kz, ki, ko € Z (7)
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is not the general integer solution of the equation

-13x1 + 3X2 - 4x3 =0 (8)

al though the solution (7) verifies the points 1° 2° and 3°
of theorem6. (1, 7, 2) is the particular integer solution
of (8) but cannot be obtained by introducing integer nunber

paraneters in (7) because from

-k + ks =1
5k; + 3k, = 7
7k - ko, =2

follows that k = 1/2 ¢ Z and k = 3/2 ¢ Z (unique roots).

Ref er ence:

[1] Smarandache, Florentin, “Wole nunber solutions of
I i near equations and systens”, M Sc. Thesis, 1979,
University of Craiova (under the supervision of Assoc.

Prof. Dr. Al exandru Dinca).
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AN | NTEGER NUMBER ALGCORI THM
TO SOLVE LI NEAR EQUATI ONS

An algorithmis given which ascertains whether a
I inear equation admts integer nunmber solutions or not; if

it does, the general integer solution is determ ned.

| nput
A linear equation aijx: + ... + axXn = b with a b e Z
[m
Xi being integer nunmber unknowns, i =1,n and not all
a = 0.
Qut put

Decision on the integer solution of this equation; if
the equation has solutions in Z, its general solution is

obt ai ned.

Vet hod

Step 1. Calculate d = (a1, ..., an).

Step 2. If d/b then "the equation has integer
solution"; go on to Step 3. |If d/b then "the equation

does not admt integer solution"; stop.

Step 3. Consider h: = 1. If O =+ 1 divides the
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([

equation by d; consider ai: = a/d, i = 1,n, b: = b/d.

Step 4. Calculate a = min [@Jand determne an i so

as?&O

that a = a.

Step 5. If a # 1, go onto Step 7.

Step 6. If a =1, then:

(A Xi = -(axs + ... + ai-1Xi-1 + aj+1Xj+«1 +

+ ... aXn - b) e g

(B) Substitute the value of x; in the val ues of
t he ot her determ ned unknowns.

(C Substitute integer nunber paraneters for
all the variables of the unknown val ues in
the right term ki, kz, ..., Kkn2 and kn:
respectively.

(D Wite down the general solution thus
determ ned; stop.

Step 7. Wite down all a;, j # 1 and b under the
form

a = ag +r

a; b
b =aq+r, whereq = W , g= @
R
Step 8. Wite Xi = - QiX1 - ... - Oi-1Xi-1 - Qi+1Xi+1 -

- ... - QXn + q - th. Substitute the value of x; in the

val ues of the other determ ned unknowns.



Step 9. a.. = 4, and ai: = -a;
: b:=r
Consi der . Xi: = thp
: h:=h+1
a-1. =r
Ai+1 . = Tj+1
én: = TIn and go back to Step 4.

Lenma 1. The previous algorithmis finite.

Pr oof

Let the initial linear equation be aixi + ... + anX
= b with not all a =0; it is considered that mn @ =

as?&O
ar # 1 (if not, it is renunbered). Follow ng the
al gorithm once we pass fromthis initial equation to a

new equation: ait; + axxz + ... + anxXxp, = b', with @,0<

M0 :
< Og;0for i =2,n, b 0O< BOand a ; = - a;. It

follows that mn [@ < mn @yl W continue simlarly
a'sth as=1

and after a finite nunber of steps we get, at Step 4, at
a: =1 (as, every time, at this step the actual a is
strictly smaller than the previous a, according to the
former note) and in this case the algorithmterm nates.
Lenma 2. Let the linear equation be: (25) aixi +

+ aXs + ... + aXn, =bwith mn [@A ;= a; and the
as?&O

20
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equation: (26) - aits + roXxx + ... +rpXp =1 Wtht; =
= - X1 - QX2 - ... - QnXn + q Where r; = a - adqi, I =
(D ai b
=2,n, r =b - a;qg while q = [ , r = M . Then
]
0 0 0_ . .
X1 = X1, X2 = X2, ..., Xn = Xp IS particular solution of
0 0
equation (25) if and only if t; =t1 = - X1 - QX2 - ... -
0 0
OnXn + @, X2, ..., Xn = Xp IS a particular solution of

equation (26).

Pr oof
0 0 0
X1 = X1, X2 = X2, ..., Xn = Xp IS a particular solution
0 0 0 0
of equati on (25) o X, + axXo + ... + apXn = b = aX, +
0 0 0
+ (r2 + aig2) X2 + ... + (rp + aign) Xn = a1 + r o roxp +
0 0 0 0 0
+ ...+ roXn - a (-X1 -Qg2X2 - ... - QOnXn t Q) =1 o - aity +
0 0 0 0 0
+ X2 + ... FIpXn =7 ot =t1, X2 = X2, ..., Xn = XpiS a

particul ar solution of equation (26).

m
Lenrma 3. Xj = cCitks + ... + Cinikn-1 +di, I =1,n1is

t he general solution of equation (25) if and only if:

(28)

ty = - (Ci1 + Q2€21 + ... + OnCn1)kKzs - ... - (Cin1 +
+ Q2C2n-1 + ...+ OnCnn-1) Ko - (di + Qodz + ... + Qnds) +
D
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+q, Xj :ch1k1+... +Cjn.1kn.1+dj, j = 2,n

is a general solution for equation (26).

Pr oof
0 0 0 0 0
t1 =11 = - X1 - QO2X2 - ... - QnXn *+ Q, X2 = X2, ...,
0
., Xn = Xp IS a particular solution of the equation (25)
0 0 0
= X1 = X1, X2 = X2, ..., Xn = Xp IS a particular solution
of
0 0
equation (26) « 3 ki = ki € Z, ..., kn = kn € Z so that
0 0 0 DID
Xi = Citki + ... + Cinikns +di =X, 1 =1,n « 3 k; =
0 0 0 0
= kl 3 Z, ..., knkn e Z So t hat X1 = Cilkl + ... + Cin-lkn-l +
0o I 0
+di =xi, i =2,nand t; = - (Ciz *+ Q2€C21 + ... + QnCn1) k1 -
0
. (Cln-l + qzCZn-l + ... + annn-l)kn-l = (dl + Q2d2 +
0 0 0 0
+ ... +Qqdn) + g =- X1 - QX2 - ... - QOnXn + q = tg.
Lemma 4. The linear equation (29) aix; + axxz + . +

+ anXn = b with @ ;0= 1 has the general solution: (30)”

X1 = - (azkz + ... + ank, - b)al,
Xi = ki e Z,
i
i = 2,n.
Pr oof
0 0 0 ]
Let X1 = X1, X2 = X2, ..., Xn = X be a particular

0 0



23

solution of the equation (29). 3 kz = X2, ..., kn = kn SO
0 0 0 0
that x; = - (axxz + ... + aXn - b)ar = X1, X2 = X2, ...,
0
., Xn = Xn.

Lenma 5. Let the linear equation be aix; + axxz +

(M
+ ... +axXn, = b, wwth mn @:;0=a; and a = a1qi, 1 = 2,n.

as?&O

Then, the general solution of the equation is:

X1 = - (0Okz2 + ... + dukn - Qq),
Xi = ki € Z,

[
i = 2,n.

Pr oof
D viding the equation by a; the conditions of Lemma 4
are met.

Theorem of Correctness. The preceding algorithm

correctly calculates the general solution of the |inear

equation aixs + ... + axXxpn = b with not all a = 0.

Pr oof

The algorithmis finite according to Lenma 1. The
correctness of steps 1, 2, and 3 is obvious. At step 4

there is always nmin [@Oas not all a = 0. The
as?&O
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correctness of substep 6(A) results fromLenmmas 4 and 5,
respectively. This algorithmrepresents a procedure of
obtaining the general solution of the initial equation by
means of the general solutions of the |inear equation
obt ai ned after the algorithmwas foll owed several tines
(according to Lenmmas 2 and 3); fromLemma 3 it follows
that to obtain the general solution of an initial |inear
equation is equivalent to calculate the general solution
of an equation at step 6(A), equations whose general
solution is given in algorithm (according to Lenmas 4 and
5). The theorem of correctness has been fully proven.

Note. At step 4 of the algorithmwe consider

a: = mn @ Oso that the nunber of iterations be as snal
as?&O

as possible. The algorithmworks if we consider

a: = a0 » max @ sObut it takes longer. The algorithm
s=1,n

can be introduced in the conputer.

Appl i cation

Cal cul ate the integer solution of the equation:

6X1 - 12X, - 8X3 + 22x4 = 14

Sol uti on
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The former al gorhythnus is applied.

1.
2.

(6, - 12, - 8, 22) =2

204 so that the solution of the equation is in

20 =+ 1; dividing the equation by 2 we get:
3X1 = 6X2 - 4Xx3 + 11x4 = 7

a: = mn {B0 Z60 B4 013 = 3, i =1
a = 1
-6 =3.(-2) +0
-4 = 3.(-2) + 2
11 = 3.3 + 2
7=3.2+1

X1 = 2X2 + 2X3 - 3X4 + 2 - t4

a;x =0 a;: = -3
as: = 2 b: = 1
as. = 2 X1: = t1

h: = 2

We have a new equation

-3t + 0 ® X, + 2X3 + 2X4 = 1,

a=mn {E30 20 2 = 2, and
i =3
a = 1

-3=2e0 (-2 +1



8.
t he val ue

2

1

26

20 0+0

201 +0

20 0+0

X3 = 2t1 - 0 ® X2 - X4 + 0 - t,. Substitutin
of X3 in the value determ ned for x; we get:

X1 = 2X2 - BXs4 + 3t - 2t, + 2

ai.

ao.

as.

=1 as: = -2
=0 b: = 1
=0 X3: = 12

h: = 3

We have obtai ned the equation:

1 e@t, + Ox, - 2t + 0 @ x4, = 1,

(O
(D

=1, and

1

tlz-(O.X2-2t2+O.X4-1).1:
2t, + 1

Substituting the value of t; in the val ues
of xi and xs previously determ ned, we get:

X1 = 2X2 - bx4 + 4t, + 5 and

X3 -Xq + 3ty + 2

X2: = ki, Xai = kg, t2 = ks, ki, k2, ks € Z
The general solution of the initial
equation is:

X1 = 2k; - Bk, + 4ksz + 5



Xo = kl
X3 = -ks + 3ks + 2
Xg = kz

ki, k2, ks are paraneters ¢ Z
Ref er ence
[1] Smarandache, Florentin, \Wole nunber sol utions of
equations and systens of equations--diploma paper,

University of Craiova, 1979.
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ANOTHER | NTEGER NUMBER ALGORI THM TO SOLVE
LI NEAR EQUATI ONS (USI NG CONGRUENCY)

In the present part a new integer nunber algorithm
for linear equations is presented. This is nore "rapid"
than W Sierpinski's presented in [1] in the sense that it
reaches the general solution after a smaller nunber of
iterations. |Its correctness will be strictly

denonstrat ed.

| NTEGER NUMBER ALGORI THM TO SOLVE
LI NEAR EQUATI ONS

Let us consider the equation (1);
(the case aj, b are in Q

[m
i =1,n, is reduced to the case (1) by bringing to the

sanme denom nator and elimnating the denom nators).

Let d = (ai, ..., an). |f dB, then the equation does not
admt integer solutions, while if db, the equation admts
i nteger solutions (according to a well-known theorem from

the theory of nunbers).
| f the equation accepts solutions and d = 1, we

divide the equation by d. Then, we can agree that d =1
(we do not make any restriction if we consider the maxi nal

co-di visor positive).
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(a) Also, if all a =0, the equation is trivial; it

i
admts the general integer solution xi = ki ¢ Z, i =1,n
when b = 0 (the only case when the general integer
solution is n - times undeterm ned) and does not have
sol utions when b = O.

(b) If 3i, 1<1i <n, sothat a =+ 1, then the

general integer solution is:

n
i = -ai (O akj - b) and xs = ks € Z, s €
j=1
] #
e {1, ..., nh\{i}

The proof of this assertion was give in [4]. Al these
cases being trivial, we wll |eave them aside. The

follow ng algorithmcan be witten:

| nput
A linear equation: (2)
n [m
O aixi =b, a, bZ a =+ + 1, i =1,n
=1 -

wth not all a =0 and (ai;, ..., an = 1.



Qut put

The general solution of the equation.

2. Calculate mn {0 r = a (nmod aq),
1<i,j<n

r .0, BO< O aF

and determine r and the paid (i,j) for which
this mnimumcan be obtained (when there are
nore possibilities we have to choose one of
t hem

3. If WO » 1 go on to step 4.
|f WO= 1, then

n
Xi: =r(-atp - O asXs + b)
s=1
se{i,j}
a-r n, I-a;
Xj =r(at + [0 e O asxs + [b)
ai s=1 ai

se{i,]}

(A) Substitute the values thus determ ned of
t hese unknowns in all the relations (p),

p=1 2 ... (if possible).

30



(B)

(O

(D

31

Fromthe last relation (p) obtained in the

al gorhyt hnus substitute in all relations:

O O
(p-1, (p-2), ..., (1).
Every relation, starting in order from

U
(p - 1) should be applied the sane

l
procedure as in (B); then (p - 2), ...,

.y (3), respectively.
Wite the val ues of the unknowns Xx;,

(M
i =1,nfromthe initial equation witing

t he correspondi ng i nteger nunber paraneters
fromthe right termof these unknowns wth

ki, ..., kni), STOP.

Wite the relation (p):

aj-r
Xj = th - m Xi:
a
Consi der xj: = tp h: =h + 1
ai: =r p: =p +1

The other coefficients and vari abl es remaining

unchanged and go back to step 2.
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The Correctness of the Al gorithm

Let us consider linear equation (2). Under these

conditions, the followi ng proprieties exist:

Lenmma 1. The set M= {WWJ r = a (nod a),
0 < WO< O g has a m ninum

Pr oof

Qoviously Mc N and Mis finite because the equation
has a finite nunber of coefficients: n and considering
all the possible conbinations of these, by twos, there is

2
t he maxi num AR, (arranged with repetition) = n el enents.

Let us show, by reductio ad absurdum that M =0 ,

(I
M=0 < a =0 (nod a) Vi, ] €1,n. Hence a =
(I
=0 (nmod ai), Vi, j el,n. O this is possible only

[
when g 0= UOaLl Vi, j € 1,n, which is equivalent to
[

(ai, ..., an) = a, Vie 1,n. But (ai, ..., a, =1
according to a restriction fromthe assunption. It
(M (M

follows that Uald= 1,n, Vi ¢ 1,n a fact which contradicts

the other restrictions of the assunption.

Mz 0O and finite, it follows that M has a m ni nrum
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Lerma 2. |If WO = mn M then WO< O a;[] V; ¢
1<i,j<n
D
c 1,n.

Pr oof

W assune, conversely, that 3Jio, 1 <io < n, so that

r0 > gy L Then WO > min {0 = Oa 021, 1 <jgo<
2 o = 14 <n o < <

< n. Let s 1 < po < n so that Egap > Déaj Oand ap IS

not divi ded by a,-o. There is such a coefficient in the
equation as EbjODis the m nimum and not all the
coefficients are equal anong thensel ves (conversely, it
woul d nean that (a;, ..., a,) = a = + 1, which is against
t he hypot hesis) and, again, of the coefficients whose
nmodul e is greater than Ebi,-ODnot all can be divided by a;

(conversely, it would simlarly result that (ai, ..., an) =

= a #+ 1). W wite [apola,-o] = (o € Z (the whol e

nunber part), and r = A, - Qodj € Z. W have ap ro
(nod ajo) and 0 < [ (O< Daj0D< DaiODf Wl Thus, we
have found a ro with [ ([J< WOwhi ch contradicts the
definition of mninmumgiven to MLl Contrary to the

(I
assunption. Thus, WO< O a0 V i ¢ 1,n.

Lenma 3. If WO=mn M= 1, for the pair of indices
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(i,j), then:

n

Xi =r (-ajtn - O asks + b)
s=1
se{i ]}
aj-r n r-a;
aj s=1 a,

se{i ]}
Xs = ks e Z, s e {1, ..., n}p \ {i,]j}

is the general integer solution of equation (2).

Pr oof
0 (M
Let Xe = Xe, € = 1,n be a particular integer solution
0
of equation (2). Then 3 ks = xs ¢ Z, s ¢ {1, ..., n} \
0 ai-lo
\ {i,j} and t, = x; + [ x; ¢ Z (because aj-r = Ma;), SO
a,
t hat :
0 ai-r No 0
Xi =r -g(x; + 0 x;) - O asxs + b =x;
a; s=1
se{i,j}
0 a-r 0 a-r No,
Xj =r -g(x; + 0 x) + [ o asXs +

ai a; s=1



35

se{i,j}
r-a,i 0
+ I b = X
a
0
and xs = ks = Xs, s e {1, ..., n} \ {i,]j}.

Lemma 4. Let WO 2 1 and (i,j) be the pair of
i ndices for which this m ninumcan be obtained. Again,

let the systemof |inear equation be:

n

ajth + I’X. + OasXs = b
s=1
s={i,]}
(3)
aj-r
th = Xj + [ Xi
a
0 [
Then, Xe¢ = Xe, € = 1,nis a particular integer solution
0
for (2) if and only if Xe = Xe, € ¢ {1, ..., n} \ {j} and
0 0 a-r
th = th = x; + MI x; is the particular integer solution
a
of (3).
Pr oof

Xe = Xe, € = 1,nis a particular integer solution for

(2)
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n 0 n 0 0 ai-r o
o O axxe =b = O asxXs + aj(x; + M x;) +
e=1 s=1 a;
s+{i,j}
0
+rxi =Db
0 0 n. 0 0 0
- ajth +rx; + O asXs = b and tnh = x; +
s=1
s+{i,j}
a-r 0
+ MM x; ¢ Z
a,;
0
= Xe = Xe, € € {1,2, ..., n} \ {j}

0
and tn, = tp is a particular integer solution for (3).

Lenmma 5. The former algorithmis finite.

Pr oof

Whien WO = 1 the algorithmstops at step 3. W wll
di scuss the case when WO » 1. According to the
definition of r, WO ¢ N*. W showthat the rowof r - s

successively obtained by follow ng the al gorithm several

times is strictly decreasing to 1. Let r; be the first

obtained by following the algorithmone tinme. [LOr.0 + 1,
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go on to steps 4 and, then 5. According to lemma 2 Il ;U<
[

< Lall Vi = 1,n. Now we shall follow the algorithma

second time, but this time for an equation in which r;

(according to step 5) is substituted for ai. Again,

according to lemma 2, the new WOwWitten @ L,Ow Il have

the propriety: [ ,0< @D ;00 W wll get to W= 1 as

M0 > 1 and W< «, and if WO =21, follow ng the

al gorithmonce again we get MO< [@ ;L] a.s.o. Hence, the

al gorhyt hnus has a finite nunber of repetitions.

Theorem of Correctness. The forner algorithm

cal cul ates correctly the general integer solution of the

i near equation (2).

Pr oof.

According to lenma 5 the algorithmis finite. From
lemma 1 it follows that the set Mhas a mninum hence
step 2 of the algorithmhas neaning. Wen MO=1 it was
shown in lemma 3 that step 3 of the algorithmcalcul ates
correctly the general integer solution of the respective

equation (the equation that appears at step 3). In |lemma
4 it is shown that if MO 21, by the substitutions steps 4

and 5 introduce in the initial equation the general

i nteger solution remains unchanged. That is, we pass from
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the initial equation to a |inear system having the sane
general solution as the initial equation. The variable h
is a counter of the newy introduced vari abl es which are
used to successively deconpose the systemin systens of
two |linear equations. The variable p is a counter of the
substitutions of variables (the relations, at a given
noment, between certain variables).

When the initial equation was deconposed to MWO= 1,
we have to follow the reverse way: i.e., to conpose its
general integer solution. This reverse way is directed by

t he substeps 3(A), 3(B) and 3(C). The substep 3(D) has

only an aesthetic role, i.e., to have the general solution
(M
under the form x; = fi(ky, ..., kn1), 1 =1,n, f; being

[inear functions with integer nunber coefficients. This
"if possible" shows that substitutions are not always
possi ble. But when they are we have to nake all the
possi bl e substitutions.

Note 1. The fornmer algorithmis witten under a form
easy to introduce in the conputer.

Note 2. The fornmer algorithmis nore "rapid" than
that of W Sierpinski's 1, i.e., the general integer
solution is reached after a smaller nunber of iterations
(or, at least, the sane) for any linear equation (2). 1In

the first place, both aimat obtaining the coefficient + 1
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for at | east one unknown variable. Wile Sierpinsk
started only by chance by deconposi ng the greatest
coefficient in the nodule (witing it under the formof a
sum between a nultiple of the follow ng smaller
coefficient (in the nodule) and the rest), in our
algorithmthis deconposition is not accidental but always
seeks the small est [MOand al so chooses the coefficients

a; and a for which this mninumis achieved. That is, we
test fromthe beginning the shortest way to the general

i nteger solution. Sierpinski does not attenpt at finding
the shortest way; he knows that his way wll take himto
t he general integer solution of the equation and is not
interested in howlong it will be. However, when an
algorithmis introduced in a conputer, it is preferable

that the conputer tinme should be as short as possible.

Exanple 1

Let us solve in Z® the equation: 17x - 7y + 10z =
= -12. W apply the fornmer algorithm

1. h=1 p=1

2. r =3 i=3j =2
3. B0 » 1, go on to step 4.

4. (1)

10-3



y:

Consi der y:

tq = [ [ ]
-7

I
—
-

az: = 3

the other coefficients and vari abl es remaining

unchanged, go back to step 2.

~1(-3tp - (-7ty) -12) = 3t, - Tty - 12

17-(-1)  -1-17

-1(17t, + (-7t,) e MM+ [N(-12)) =
3

3

72

e the values of x and z thus

n the only relation (p) we

(1) y:t1+Z:-17t2+43t1- 72

The substitution is not possible.

The substitution is not possible.

r=-1, 1 =1, |

EH10= 1

X =

Z =

= -17t, + 42t -

(A W substitut
det erm ned
have:

(B)

(©

(D) The general

equation is:

X:3k1-

i nt eger solution of the

7k, + 12

40
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-17ky + 43k, - 72

<
I

z = -17ky + 42k, - 72; ki, ks € Z

Ref er ences
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| NTEGER NUMBER SCOLUTI ONS OF LI NEAR SYSTEMS
Definitions and Properties of the

| nteger Sol ution of a Linear System

n (0
Let O ajx; = b, i =1, m (1)
j=1
A linear systemwth all its coefficients' integer

nunbers (the case with rational coefficients is reduced to
t he sane).

0 (M
Definition 1. Xj =X, J =1,nis a particular
0 [ n 0
integer solution of (1) if x; ¢ Z, j = 1,nand O ajx; =
j =1
[ (M
=b, i = 1,m Let the functions be f; : z" -~ Z | = 1,n,
where h ¢ N*.
il
Definition 2. Xj = f; (ki, ...kn), J = 1,n, is the
general i1nteger solution for (1) if:
n (0
(a) O ai,-f,- (kl, C ey kh) =b, i =1, m
j=1
of (ki, ..., kn) € Z
0 (M
(b) For any Xj =X, J = 1,n, particular
0 0
i nteger solution of (1), there is (ki, ..., kn) €
0 0 (I
e Zso that f; (kiy, ..., kn) =X, V; =1,n.
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(I'n other words, the general solutionis

the solution that conprises all the other

sol utions.)

Propriety 1

A general solution of a |inear system of m equations
with n unknowns, r (A) = m<nisn- mtines

undet er m ned.

Pr oof

We assune by reductio ad absurdumthat it is of order
rr 1<r <n- m(the caser =0, i.e., the solution is
particular, is trivial). It follows that the general

solution is of the form

X1 = UuPr + ... + UupPr + V2

(S1)
Xn = UmaP1 + ... + UnPr + Vn, Un, Vi € Z

pn = paraneters ¢ Z
We prove that there are n - mtinmes undeterm ned
solutions. The honogenous |inear system (1), solved inr

admts the sol ution:
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1 1
1 Dn
X1 = [ x m1 T + [0 Xn
D D
m m
: D1 Dn
Xm = OOX 1 + + [0 x,
D D
0 (M
Let xi = Xj, I =1,n be a particular solution of the

[ inear system (1).

Consi deri ng

Xm1 = D ® kw1, We get a solution
1 1 0
X1 = Dmwikm1 +...+ Dikn + X1
Xn =D e ki,
. m m 0
Xm = Dpikma +...+ Dikn + Xnm

0
Xm1i = D ® Kma + Xmea

. 0
Xn :D.kn+Xn, kJ =

= paraneters ¢ Z

whi ch depends on the n - mindependent paraneters, for the

system (1). Let the solution be n - mtines undeterm ned:



X1 = Cuiki + ... + Cin-nKnem + di
(S2)

Xn = Cuki + ... + Cphn-nKnem + dp

Cij, di € Z, kj = paraneters ¢ Z

(There are such solutions, we have proven it before.)

Let the system be:

aii Xy + ... + ainXn = bl

. aij, bi ez

aQmuXi * ... + amXn = bn Xi = unknowns ¢ Z

M
| . The case bi = 0, i = 1, mresults in a honbgenous
i near system
M

aixi +... +an=0,1 =1, m

(S2) = ai1(Citks + ... + CinnKnom + d1i) + ... ain(Cnik:s +

+ ... Con-nKn-m + dn) =0

45
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0 = (ai1€11 + ... + ainCn)ks + ... + (@1Cinm +

+ + ainCnn.m) L] kn-m + (aildl + +

+ aindn), V kJ € Z

For k; = = knm=0 = aj1ds + ... + a,d, =0
For k; = = Kn.1 = khv1 = ... = kpom= 0 and k, =
=1 = (aiiCin + ... + @nCnn) + (a@idy + ...
+ aindgn) = 0 = aj1Cn + ... + &nCan = 0
(0 (I
Vi=1,m V h =1, n-m
oy
| | (I _
Vect. VW, = | |, h=1,n-m are the particular
.|
| Con | sol utions of the system
([T

h =1,n-mare also linearly independent because the

solution is n - mtinmes undetermned. {Vi, ..., Vo +d

is alinear variety that includes the solutions of the

systemobtained from (S;). Simlarly, for (S1) we deduce

Uss
. [m
, S =1,r are particul ar solutions of
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Uns
the given systemand are linearly independent because

(S1)) =r - times undeterm ned sol ution and

Vi
V = : = a solution of the given system

Vi

The case (a). U, ..., U, Vv = linearly dependent,
it follows that {U, ..., U} is a free subnodul e of order

r <n- mof solutions of the given system then, it
follows that there are solutions that belong to {Vi, ...
Vo-mp + d and which do not belong to {U, ..., U}, a fact
whi ch contradicts the assunption that (S;) is the general
sol uti on.

The case (b). U, ..., U, V =linearly independent.

{U, ..., U} + Vis alinear variety that conprises the
solutions of the given system which were obtained from
(S1)). It follows that the solution belongs to {Vi, ...,
Vo-mp + d and does not belong to {U;, ..., U} + V, a fact
which is in contradiction with the assunption that (S) is

t he general sol ution.



VWhen there is an i

i near system

(S)

e 1I,m b

aj1X1 + ... + ainXn = b,

= aj1 (Cuks + ...

+ Cin-

+ amm (cmks + ...

it follows that

for

for

# 0 = nonhonobgeneous
M
I =1, m

nkn-m'*'dl) + ... +

+ Con-rKn-m + dn = Dby;

= (@ai1€11 + ... + anCn) ki + ... + (a&iCin-m +
+ . s + ai nCnn-m) kn-m + (a| 1dl + . e + ai ndn)
= bi;
ki = ... = KkKnm=0 = aj1dy + ... + ajndy = by;
k1:... :kj.lzkj+1:... =kn.m=Oand kj:].

48

= (ajiCyj + ... + ainCp + (ainds + ... +
+ ain dn) = by it follows that
aj1C1j + ... + ainCp =0
[ (M
ady + ... +andy=bi, Vi = 1,m Vj =1 nm
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Cij
: (T
Vi = : , ] = 1,n-mare linearly independent
Cnj because the solution (S;) in
n - mtinmes i s undeterm ned.
d:
(T :
20V, j =1,n-mand d = : are linearly independent.
dn
We assune that they are not linearly independent. It
foll ows that
d = S]_V]_ + P + Sn.mVn.m =
S1C112 + ... * Snnlin-m
Si1Cn1 + ... + Snnlnn-m
M
Irrespective of i =1, m
b, = aidy + ... + ands = a1 (S1€11 + ... + Snulin-m +
+ ... + an (S1Cn1 + ... + SpnCoanm = (@ic™ + ... +
+ ainCnl) S:1 + ... + (ailcln-m + ... t ainCnn-m), Sn-m =



(M
Then, b; = 0, irrespective of i = 1, m contradicts the
(M
hypothesis (that if thereis ani €1, m b = 0). It

follows that Vi,

Voom d are linearly independent.

50
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{Vi, ..., Vau} + dis a linear variety that contains
the solutions of the nonhonbgeneous system sol utions
obtained from(S;)). Simlarly, from(S:) it follows that
{G, ..., G} +Vis alinear variety containing the
sol utions of the nonhonbgeneous system obtained from
(S) .

n-m>r follows that there are solutions of the
systemthat belong to {Vi, ..., Vo + d and which do not
belong to {G, ..., G} + V (it contradicts the fact that
(S;1) is the general solution). Then, it results that the
general solution depends on the n-m i ndependent
par aneters.

Theorem 1. The general solution of a nonhonbgeneous
linear systemis equal to the general solution of an
associ ated |linear systemplus a particular solution of the

nonhonbgeneous system

Pr oof

Let the honobgeneous |inear sol ution:

aiiXy + ... + ainXn = 0

0)
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wi th the general solutions:

X1 = Cuiki + ... + Cin-nKnem + di
Xn = Ciki + ... + Cpn-nKn-m + dp
0
and X1 = X1
. 0
Xn = Xn

a particular solution of the nonhonbgeneous |inear system

AX = b;

0
Cuuki + ... + Cin-nkn-m + d + X3

?1 X1
0

Xn = Cniki + ... + Con-nKn-m + dn + Xi

is a solution of the nonhonobgeneous |inear system

W have witten

i1 ... dAin X1 by (0]

dnt ... Am Xn bm o
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(vector of dinmension m,
0
ki1 Ci1 ... Cip-m d: X1

kn-m Cht - .. Cnhn-m dn Xn

AX = A(Ck +d+ x% = ACK +d) + AX"=Db+0

I
(o

W w il prove that irrespective of x; =

|
<
-

Xn = ¥Yn

there is a particular solution of the nonhonbgeneous system

0

kl = kl € Z

. 0

Knom = Knom e Z with the propriety:
0 0 0 0

X1 = Cuiki + ... + Ciknom + di + X1 = y3

. 0 0 0 0

Xn = Cnlkl + ... + Cnn-nkn-m + dl + Xn = Yn

0

Ve wite y° = vy,
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Yn

(M

0

We denonstrate that those kj ¢ Z, | = 1,n-mare those for
0

which A(CX° + d) = 0 (there are such X e Z because

X1:O

is a particular solution of the honbgenous |inear system
and X = CK + d is a general solution of the nonhonbgeneous
linear system) A(CK® +d + X° - Y9 = A(CK® + d) + AX -

- AY =0+b- b=0.

Propriety 2. The general solution of a honbgenous

i near system can be witten under the form

X1 = Cuiki + ... + Cin-nKnem
(SG
(2)

Xn = Cnik1 + ... + Con-nKn-m

kj = a paraneter belonging to Z (with di =d, = ... =

:dn:O)
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Pr oof

(SG = general solution. It results that (SG is
(n-m tinmes undeterm ned.

Let (SG of the form be

X1 CuiP1 + ... + Cin-nPn-m + ds

Xn = Cn1Pr + ... * Con-nPn-m + dn

with not all di = 0; we denpnstrate that it can be witten

under the form(2); the systemadmts the trivial solution
X1 = 0 € Z
Xn = O € Z

it results that there are pj ¢ Z, | =1,n-m

0 0
X1 = CuP1 + ... + CinnPnm+ di = 0
(4)
. 0 0
Xn = Cn1Pr + ... * Con-nPn-m + d =0
0 (o

Substituting pi = kj +pj, ] =1,n-min (3)
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piGZ}ﬂkj=pj-pj€Z

whi ch neans that they do not make any restrictions.

It results that

0 0
X1 = Cuiki + ... + Cin-nKnom + (C11p1 + ... + Cin-nPn-m + di)
. 0 0
Xn = Cniki + ... + Cpn-nKnem + (Cnlpl + ... * Chn-nPn-m + dn)
0 0 (M
But crnip1 + ... + Chn-nPn-m + dn = 0, h =1,n (from(4)).

Then the general solution is of the form

X1 = Cuiki + ... + Cin-nKn-m
Xn = Cnuiki + ... + Chn-nKnem
(o

kj = paraneters ¢ Z, j = 1,n-m it results that d; = d; =
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=... =dy =0

Theorem 2. Let the honpbgenous |inear system be:

aiiXy + ... + ainXn = 0
amX1 + ... + amXn =0, r(A =m
([
(an, ..., am) =1, h =1 mand the general solution
X1 = Cuki + ... + Cin-nKn-m
Xn = Cnuiki + ... + Chn-nKnem
then (an:, ..., ani-1, @i+, ..., am)lCis, ..., Cinn
([ ([
irrespective of h = 1, mand i = 1,n.

Pr oof
[
Let sonme arbitrary be h ¢ 1, mand sone arbitrary i ¢
[
1,n; amX:s + ... + @pi-1Xi-1 + @nhi+1Xi+1 + ... + amXn = aniXi.
Because (ani, ..., @ni-1, @ni+1, ..., ann)lan it results that
d = (an, ..., ani-1, ani+, ..., an) X, irrespective of

the value of x; in the vector of particular solutions; for

ko = ks = ... = knm=0and k; = 1 we get the particular
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sol uti on:
X1 = Cn
;<i = Cci1 —» dl@;; and so on
Xn = Cni
for x1 =k = ... = Knm1 = 0 and kn.m = 1 the foll ow ng

particul ar solution results:

X1 = Cin-m
Xi = Cin-m
Xn = Cnn-m
(I
it results that d@d ., hence, did;;, j =1,n-m-=
= dllcii, ..., Cinm.
Theor em 3.

X1 = Cuuki + ... + Cin-nKn-m Cij € Z being given
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Xn = Cniki + ... + Con-nKn-m Kj = paraneters e Z

is the general solution of the honbgenous |inear system

aiixX, + ... +alan:O m< n,
émxl-r... + amXn = 0 r(A) = m

(T
then (cqy, ..., Cn) =1, Vj =1,n-m

Pr oof

We assune, by reductio ad apsurdum that there is

(10
Jo e 1,n-m (C”o’ Ce cmo) =d # 1, we consider the

maxi mal co-divisor > 0; we reduce the case when the

maxi mal co-divisor is -d to the case when it is equal to d
(nonrestrictive hypothesis); then the general solution can

be witten under the form

X1 Cuks + ... + Cljo dkjo + ... + Cin-nKnem

(5)

Xn = Cnlkl + ... + ano koO + ... + Cnn-nkn-m
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wher = i i i = ® Cij n i
e eq (cij, . Cni ) Cij d e ci and (ci , :

.y ano) = 1

We prove that

X1 = Cljo

is a particular solution of the honbgenous |inear system

W wite
C11 Cij d ... Cin-m

Cnl . e CnJ d . s Cnn.m

X = c ® k the general solution;

adiz ...

W know AX = 0 = A(CK) =0, A

anl...

i(n-m

ain

am
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We assune that the principal variants are Xi, ..., Xm (if
not we have to renunber). It follows that Xmi, ... Xn IS
t he secondary vari ant.

For ki = ... = kjdl = kj&i = ... = Knom=0 and k%) =1

we get a particular solution of the system

X1 = €3 d c,; d Cyj
0 0
.0 .
= O = A . = d L] A . =
Xn = an d an d an
0 0
0
Cij X1 = Cyj
0
. 0
= A = O =
Cnj Xn = Cnj

is the particular solution of the system
We denonstrate that this particular solution cannot

be obtai ned by

X1 cuki + ... cCyj dkjo + ... + Cin-nKn-m = Cljo
0

(6)

Xn Cnlkl + .« e + ano koO + .« e + Cnn-nkn-m = ano
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Xm1 = Cmaks + ... + Cm+1dkj0 + ... + Cmi,n-nKnom = Cm+16'
(7)
Xn = Cnlkl + P + ano koO + P + Cnn-nkn-m = ano
Cmplyl . e Cm+—1] . e Cm+—1n-m
0
Chl - CnJ P Cn’n.m 1
. k% = = U ¢ Z (because dz1).
: d
Cm+—1’1 . e Crm—]_’jo d . s Cm#]_,n-m
Cnl - an d P Cn,n-m

It is inportant to point out the fact that those k;j = kj,

(I
] =1,n-mthat satisfy system(7) also satisfy system (6),

because, otherwi se (6) would not satisfy the definition
of the solution of a |linear systemof equations (i.e.,

considering system (7) the hypot hesis was not

restrictive). Fron1mo e Zit follows that (6) is not the

general solution of the honbgenous |inear system

contrary to the hypothesis); then (cy ... Cpn) = 1,
(T
irrespective of | = 1,n-m

Propriety 3. Let the |linear system be

aiiX:1 + ... ainXn = bl
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AmX1 + ... + amXn = bm

aij, b ¢ Z r(A = m<n, Xj = unknowns ¢ Z

Solved in R we get

X1 fl(Xm+1, C e, Xn)

X1, ..., Xmare the

Xm = Fol Xmet, -« Xn)

main variants where f; are linear functions of the form

Crm-]_er—l'*'. .. +Can+ei i DID
fi = D]]]]]]]]]]]]]]]]]V\Ihere Cm#j, di, e € Z, | = 1,m
di
(T
] = 1,n-m
€j I
If 00 € Z irrespective of i = 1, mthen the linear system

d;

admts integer solution

Pr oof

For 1 <i <m X; ¢ Z then f; ¢ Z. Let:



X1

Sol uti on
X1

Xm

where uUum: 1S the maxi nal co-di vi sor

the fractions

= UmraKme1

= Unkn
1 1

= Vmplkmpl + PR + Vnkn +
m m

= Vmplkmpl + PR + Vnkn +

i

[, i =

d;

[ (]

1, m j =1,n-mcalculated after

31

di

dm

their sinplification when they were irreducible.

i Cmrj Unwi

Viej = D e Z

d;

this is a solution n-mtines

undet erm ned (depends on n-m i ndependent paraneters:

Kmeny, « v oy

Propriety 4.

kn) but

there is an ig

[
cl m

is not a general

fi
0

o

sol uti on.

= Um+'1Xm+—1 +

Under the conditions of propriety 3,

I o
+ U, X, + Mo

€i
0

64

of the denom nators of

i f
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€
io (T 0
wWith umj ¢ Z, j =1,n-mand I ¢ Z then the system does
d‘o
not admt integer solution.
Pr oof
vxm,...,xninZitresuItsinxiogZ.

Theorem 4. Let the |inear system be

aii X, + ... +alan:b1

AmX1 + ... + amXn = bm
aij, bi € Z, x; = unknowns ¢ Z, r(A) = m<n. |If there are
indices 1 <i; < ... <im<n, ined{l, 2, ..., n},

[0

h =1 mwth the propriety:

aij Ca azii
1
A = . ) and

Ani Ani
1



t hen

Pr oof

AX = b aij , aij
I l m - - -
is divided by
bm Ani C Ani
2 m
i Ce i b1
— 1 ml
AX . - . : . . .
i m : : is divided by
am e arri bm
1 ml

the systemadm ts integer nunber sol utions.

We use propriety 3

Note 1. Conversely, it is not true.

Consequence 1. Any honobgenous |inear systemadmts

i nt eger nunber solutions (beside the trivial one); r(A)

= m< n.

Pr oof

(o
Ax =0 ' 4 irrespective of h =1m

66
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I h

Consequence 2. If Ao =+ 1, it follows that the

linear systemadmts integer nunber sol utions.
Pr oof

[
1,

ax P (+1), irrespective of h =1m

Ax € Z.
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FI VE | NTEGER NUMBER ALGCORI THMS TO
SOLVE LI NEAR SYSTEMS

This chapter further extends the results obtained in
4 and 5 (fromlinear equations to |inear systens). Each
algorithmis strictly denonstrated and then an exanple is
gi ven.

Fi ve integer nunber algorithms to solve |inear

systens are further given.

Algorithm 1 (nmethod of substitution)

(Al though sinple, this algorithmrequires conplex
cal culus but is, neverthel ess, advantageous in introducing
it in the conputer).

Sone integer nunber equations are initially solved
(which is usually sinpler) by nmeans of one of the
algorithnms 4 or 5. (If there is an equation of the system
whi ch does not admt integer systens, then the integer
system does not admt integer systenms. Stop.) the
general integer solution of the equation will depend on n-

1 integer nunber paraneters (see 5):

CRPRE m (D
(p1) Xi = f‘1 (ki, ..., kn1), i = 1,n where all
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(1)
the functions fil are linear with integer nunber

coefficients.

Thi s general integer nunber system (pi) is introduced
in the other m1 equations of the system W get a new
systemof m1l equations with n-1 unknown vari abl es:

(n ML) _ _ o
kil, iy = 1,n-1, which is also to be solved in integer
nunbers. The procedure is simlar. Solving a new

equation, we obtain its general integer solution:

(1) (2 (2 _
(p2) ki, =fi (ki , ..., knz2), i2=1,n-1

(2)
where all the functions fiz are linear, with integer

nunber coefficients. (If, along this algorithmwe cone
across an equation which does not admt integer solutions,
then, the initial system does not admt integer solution.
Stop.)

In the case that all the solved equations adnmtted
integer systens at step (j), 1 <j <r, (r being of the

sanme rank as the matrix associated to the systen) then:

(j-1) (i) (i) (i) iy
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(p,) kij = fij (kl, C ey kn-j ), ij = 1,n-j+1,

ff? are linear functions with integer nunber
coefficients.

Finally, after r steps, and if all the solved
equations admtted integer solutions, we get to the
i nteger solution of one equation with n-r+1 unknown
vari abl es.

The systemw || accept integer solutions if and only
in this last equation will have integer solutions. If it

does, let the general integer solution of it be:

(r-1) (r) (r) (. [T
(p) ki =t (ki ..., ke, i¢ = 1n-r+d

(r)
where all f; are linear functions with integer nunber
r
coefficients.
Now t he reverse way foll ows.

) (r-1) ) [T
W& introduce the val ues of Kk; , ir = 1, n-r+l1
r

_ (r-2) g
at step (pr) in the val ues of h( b ir-12 = 1,n-r+2 from
r-

step (pr-1).

It foll ows:
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(r-2) (r-1) (r) (r) (r) (r) (r) (r)
Ki = f (f1 (kKy .oy Kooy ooy facrsa(ke o0 Kier))
a r-1 r-1
(r-1) (r) (r) m
= 0 K1 a---,kn-r), lr.1 =1,n-r-1

(r-1)
fromwhich it follows that g are linear functions with
r

i nt eger nunber coefficients.
Then follow those from (pr-2) in (pr-e), and so on

until we introduce the values obtained at step (p2) in

those fromthe step (p1). It wll follow
(1) (r) (r) _
Xi_ = 0i (ki , ..., knr notation 9, (ki, ..., Knr),
(M
I =1,n
with all 9, nost obviously, linear functions with

i nt eger nunber coefficients (the notation was nade for
sinplicity and aesthetical aspects). This is, thus, the
general integer solution, of the initial system

The correctness of algorithm1. The algorithmis

finite because it has r steps on the first way and r-1
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steps on the reverse. (r < + «). Qoviously, if one
equation of one system does not accept (integer nunber)
solutions then the system does not have either.

Witing S for the initial systemand S the system
resulted fromstep (pj), 1 <j <r-2, it follows that
passing from(p;j) to (pj«1) we pass froma systemS; to a
system S;+1 equi valent fromthe viewpoint of the integer

(i-1) 0 ([

nunber solution, i.e., ki =t; , 1; =1,n-j+1 which is
J J

a particular integer solution of the systemS if and only

0D o mo- . .
if ki ~=h ., ija=1n-j is aparticular integer
Jt I
. 0 (j+1) 0 0
solution of the system Sj.; where h; L - fi ) (ta, ..., thj+1),
]t I
(M
ij++ = 1,n-j. Hence, their general integer solutions are

al so equi val ent (considering these substitutions). So
that, in the end, the solving of the initial systemSis
equi valent wth the solving of the equation (of the system
consisting of one equation) S.; with integer nunber
coefficients. It follows that the system S admts integer
nunber solution if and only if all the systens § admt
i nteger nunber solution, 1 <j <r-1.

Exanple 1. By neans of algorhythnus 1, let us

cal cul ate the integer nunber solution of the system
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5x - 7y - 2z + 6w = 6
(S)
-4x + 6y - 3z + 11w =0
Solution: W solve the first integer nunber equation. W

obtain the general integer solution (see [4] or [5]):

X =t + 2t>
:tl
(p1)
z = -ty + 5t, + 3tz - 3

w=tsz,

where tq, to, tz e Z

Substituting in the second, we get the system

(Sl) 5t1- 23t2+2t3+9:O

Solving this integer equation we obtain its general

i nt eger sol ution:

t: = ki

(p2) to
ts

ki + 2k + 1

9k, + 23k, + 7

where ki, k, ¢ Z
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The reverse way. Substituting (pz2) in (p1) we

obt ai n:
X = 3k:s + 4k, + 2
y = ki
z = 31k; + 79k, + 23
w = 9k; + 23k, + 7

where ki, k; ¢ Z which is the general integer solution of

the initial system(S). Stop

Al gorithm 2
| nput

A linear system (1) without all aj; = 0.
Qut put

We decide on the possibility of an integer solution
of this system |If it is possible, we obtain its general

i nt eger sol ution.

2. (A) D vide each equation by the maxi mal co-
di visor of the coefficients of the unknown

variables. |[If you do not get an integer
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guotient for at |east one equation, then the
system does not admt integer solutions.
St op.

(B) |If there is an inequality in the system
then the system does not admt integer
solutions. Stop.

(C© If the repetition of nore equations occurs,
keep one and if an equation is an identity,
remove it fromthe system

If there is (io, jo) SO that Eh%ﬂoD: 1, then

obtain the value of the variable Xj fromthe

equation io; relation (Ty). Substitute this
relation (where possible) in the other equations

of the systemand in the relations (T:i.1), (H)

and (P,) for all i, hand p. Consider t: =1t + 1,

renmove equation (io) fromthe system |If there

is not such a pair, go on to step 5.

Does the system (left) have at | east one unknown

variable? |If it does, consider the new date and

go on to step 2. If it does not, wite the
general integer solution of the system
substituting ki; k2, ... for all the variables
fromthe right termof each expression which

gi ves the val ue of the unknowns of the initial
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system  Stop.

5. Calculate a = mn {WL aj
i jue !

r (nod auz),

0 < mO< O &jz@, and determ ne the indices
i, J1, J2 as well as the r for which this m ni mum
can be calculated. (If there are nore variants,

choose one, arbitrarily.)

6. Wite: Xj, = t, [0 Xij relation (H).
aij
2

Substitute this relation (where possible) in al

t he equations of the systemand in the relations

(Te), (H) and (P,) for all t, h and p.

7. (A If a =+ 1, consider Xj, o = th, h: = h + 1 and

go on to step 2.

(B) If a =1, then obtain the val ue of Xj, from
fromthe equation (i); relation (Pp).

Substitute this relation (where possible) in the

ot her equations of the systemand in the

relations (T:), (H) and (P,.1) for all t, h and p.

Renove the equation (i) fromthe system

Consider h: = h + 1, p. = p + 1 and go back to

step 4.

The correctness of algorithm?2. Let the system (1) be.
Lerma 1. We consider the algorithmat step 5. Al so,
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let M= {IL] E':lijl =r (nod aijz), O<mD<Daij2D i, 1,
j2=1, 2, 3, ...}. Then M =D .
Pr oof

Qoviously, Mis finite and Mc N*. Then, Mhas a
mnimumif and only if M0 . W suppose, conversely,
that M=0 . Then aj, = 0 (nod anz), Vi, j1, j2. It
foll ows conversely as well that aj, = 0 (nod a”l), Vi,
j1, J2. That is Eh”l[]: []anz[] V i, ji, j2= W consider
aio arbitrary but fixed. It is clear that (a%L Ce

- a%ﬂ) ~ a7 0, Vj (because the algorithm has passed
t hrough the substeps 2(B) and 2(C)). But, as it has also
passed through step 3, it follows that Eb%jD 1, Vj, but
as it previously passed through step 2(A), it would result
t hat DmojD: 1, Vj. This contradiction shows that the

assunption is fal se.

Lemma 2. Let aj, =T (rod auz). Substitute Xj, =

aiojl =T
=ty - D Xj | in the system (A) obtaining the system
ainZ
0 [m
(B). Then, xj = Xj, ] = 1,nis the particular integer

0
solution of (A) if and only if X; =X, J # j2 and ty =



0

I

ai j

i
0
+ [Mis the particul ar
ai j
0 2

i nteger solution of (B).

78
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Lemma 3. Let a; 1 and a, be obtained at step 5.

Then 0 < a, < ai.

Pr oof.

It is sufficient to show that a; < [a;Ll V i,] because
in order to get a; step 6 is obligatory, when the
coefficients of the new system are cal cul ated, a: being
equal to a coefficient fromthe new system (equality of
nodul es), the coefficient on (igf1).

Let ai . with the propriety Ebio,-ODf a;. Hence, a; >
> EbiojD: mn {DaiojE}J. Let ai wth EbiojsD> Daiijthere
is such an el ement because Ebio,-mDis the m ni mum of the

[
coefficients in the nodule and not all EbiojD Jj = 1,n are

equal (conversely, it would result that (aio,-, a‘o”) ~

[
~ ai g, Vj e 1,n; the algorithm passed through substep 2(A)

has sinplified each equation by the maxi mal co-divisor of
its coefficients; hence, it would follow that Ebio,-D: 1,

[
Vj = 1,n which, again, cannot be real because

the al gorithm has al so passed through step 3). O the

coefficients a j e choose one with the propriety a7

0

* Maj | there is such an elenent (contrary, it would result

(a‘ol’ a‘o”) ~ Ebioj [J] but the algorithmhas al so passed
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t hrough step 2(A) and it would nean that D&ohnD: 1 which

contradicts step 3 through which the algorithmhas al so

passed).
Considering qo = ai; [/ aij e Zandr = a ; -
0 s 0Om 0 s
0 0
- Qo aij € Z, we have aj = To (nod a%ﬂm) and 0 <

0
< [Orold< E]a%j HES EJaHQOD < a;. W have, thus, obtained an
o =
ro wwth M ld< a,;, which is in contradiction with the very
definition of a;. Thus, ai: < a0} V i,j.

Lenma 4. Algorithm2 is finite.

Pr oof.

The functioning of the algorithmis nmeant to
transforma |inear system of m equations and n unknowns
into one of mx n;, wwth m <m n: < n and, thus,
successively into a final linear equation with n - r + 1
unknowns (where r is the rank of the associated matrix).
This equation is solved by nmeans of the same al gorithm
(which works as [5]). The general integer solution of the
systemw || depend on the n - 1 integer nunber independent
paraneters (see [6]--simlar proprieties can be
established also for the general integer solution of the
I inear system). The reduction of equations occurs at

steps 2, 3 and substep 7(B). Steps 2 and 3 are obvious
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and, hence, trivial; they can reduce the equations of the
system (or even put an end to it) but only under
particul ar conditions. The nost inportant case finds its
solution at step 7(B), which always reduces one equation
of the system As the nunber of equations is finite, we
cone to solve a single integer nunber equation. W also
have to show that the transfer fromone systemmx n; to
another msuxniss is made in a finite interval of tinme: by
steps 5 and 6 permanent substitution of variables are nmade
until we get toa =1 (we get to a = 1 because, according
tolemma 3, all a - s are positive integer nunbers and
forma strictly decreasing row).

Theorem of correctness. Algorithm?2 correctly

cal cul ates the general integer solution of the |inear

syst em

Pr oof

Algorithm2 is finite according to lenma 4. Steps 2
and 3 are obvious (see also [4], [5]). Their part is to
sinplify cal culus as nuch as possible. Step 4 tests the
finality of the algorithm the substitution with the
paraneters ki, kz, ... has system zation and aesthetic
reasons. The variables t, h, p are counter vari abl es

(started at step 1) and they are neant to count the
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relations of the type T, H, P (nunbering required by the
substitutions at steps 3, 6 and substep 7(B); h also
counts the new (auxiliary) variables introduced in the
nmoment of deconposition of the system The substitution
fromstep 6 does not affect the general integer solution
of the system (it follows fromlema 2). Lemma 1 shows
that at step 5 there is always a, becauseD =+ M c N+.

The algorithmperfornms the transformati on of a system
mxn; into another, aj.iXni+;, equivalent to it, preserving
the general solution (taking into account, however, the
substitutions) (see also lema 2).

Exanple 2. Calculate the integer solution of:

- 12x - 7y + 9z =12
- 5 + 8 + 10w= 0

0z + Ow= 0

15x + 21z + 69w = 3

Sol ution
W apply algorithm2 (we purposely | ooked for an
exanpl e to be passed through all the steps of this

al gorithm

2. (A) The fourth equation becones: 5x + 7z +
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23w = 1
(B --
(© Equation 3 is renoved.
No; go on to step 5.
a=2andi =1, j1 =2, J, =3 and r = 2.
z =t1 +y, the relation (H). Substituting it

in the system

- 12x + 2y + 9t, =12
3y + 8t + 10w = O
5x + 7y + 7t1 + 23w = 1

a » 1; consider z: =1ts, h: =2 and go back to
step 2.

No. Step 5.

a=1landi =2, j1 =4, J, =2 and r = 1.

y =tz - 3w, the relation (H). Substituting in

the system

- 12X + 2t, + 9t - 6W = 12

I
o

3t2+8t1+ w

I
[ —

5x + 7t, + 7t1 + 2w

Substituting it in relation to (H), we get:
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z t1 + t, - 3w, relation (H)"'.

w=- 3t, - 8ti1, relation (Py).
Substituting it in the system we get:
- 12x + 20t, + 57t; = 12

5x + to - ot, = 1

Substituting it in the other relations, we get:

z = 10t, + 25t, , (H) 'y

y = 10t, + 24t, , (H) "'

h: =3, p: = 2 and go back to step 4.
Yes

to =1 - 5x + 9t,, relation (Ti).
Substituting it (where possible) we get:
{- 112x + 237t; = -8 (the new system

z = 10 - 50x + 115t;, (H)'""
y = 10 - 50x + 114t5, (H)'"
w= -3 + 15x - 35t;, (P)'

Consider t: = 2; go on to step 4.

Yes. o back to step 2. (From now on al gorithm

2 works simlarly with that from|[5], with the
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only difference that the substitutions nust also
be made in the relations obtained up to this
poi nt) .

No. Go on to step 5.

a = 13 (one three) and i =1, j1 =2, j2 =1 and
r = 13.
X =tz + 2t1, relation (Hs).

After substitution we get:

-112t; + 13t; = -8 (the systen)
z =10 - 50ts + 15t; , (H)'Y;

y =10 - 50ts + 14ty , (H)'""

w = -3 + 15tz - 5t; , (Py)"'

t, = 1 - b5tz - t, (Ty)'

X: =ts h: =4 and go on to step 2.

No, go on to step 5.

a=5andi =1, j; =1, j,=2andr =5
t1 = ts + 9ts, relation (H).

Substituting it, we get: 5tz + 13t, = -8 (the

systen).
z =10 + 85ts + 15t, , (H)Y
y =10 + 76tz + 14t, , (H)'Y ;



o g w N

86

X = 19t; + 2t. (H)' ;
w = -3 - 30ts - b5t, , (Py)"" "
t, = 1 - 14t5 - ta , (To)"" ;

ti: = tsy, h: =5 and go back to step 2.

No; step 5.
a=2andi =1, j1 =2, j2=21andr = -2.

ts = ts - 3ts, relation (H). After substitution,

we get:

5ts - 2t, = -8 (the system
z = 10 + 85ts - 240t, , (HOYV

y = 10 + 76ts - 214t, , (H)Y

X = 19ts - 55t4 , (H)'Y

w =-3- 30ts + 85t , (P)"Y

t, = -1 - 14ts + 41ty , (To)' '

t, = Ots + 26t4 , (Ho) " s

ts: =ts, h: = 6 and go back to step 2.

No; step 5.
a=1andi =1, j1 =1, jo, r =1
ta = te + 2ts, relation (H). After substitution,

we get:
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ts - 2tg = -8 (the systen)
z = 10 - 395ts - 240ts , ()"
y = 10 - 392ts - 214t , ()Y
X = - 9lts - b55ts , (H)" "'
w = -3 + 140ts + 85t , (P)Y
t, = 1+ 68ts + 4lts , (Ty)'Y
ty = - 43ts - 26ts , (H)""
ts = - 5ts - 3t , (Hs)' ;

ts = 2t - 8, relation (P;). Substituting it in
the system we get: 0 = 0.

Substituting it in the other relations, it

fol |l ows:

z = -1030ts + 3170
y = - 918ts + 2826
X = - 237tsg + 728
w = 365t¢ - 1123
to = 177te - 543
t = 112t¢ + 344

relations of no inportance

ts = 13ts + 40
ta = S5te - 16

Consider h: =7, p: = 3 and go back to step 4.

te ¢ Z
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No. The general integer solution of the system

is:

-237ky + 728

y = -918k; + 2826
z = 1030k; + 3170
w = 365k; - 1123
where k; is an integer nunber paraneter.

St op.

Al gorithm 3

| nput

A linear system (1).

Qut put

We decide on the possibility of an integer sol ution of

this system If it is possible, we obtain its general

i nt eger sol ution.

Met hod

1.

Sol ve the systemin R'. If it does not have
solutions in R, it does not have solutions in Z"
either. Stop.

f =1, t =1, h=1, g=1

Wite the value of each main vari abl e x; under
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the form

(Er )it X :_O gij Xj; +q + (_O rijXj + ri)/ ai,
J J

with all dij, Qi, rij, ri, i in Z so that all
Ori;0< OAQ A # 0, Ori0< Ox0O(wWhere all mlm
the right termare integer nunber vari abl es:
either of the secondary variables of the system

or other new vari ables introduced with the

al gorhythmus). For all i, we wite Fij, = ai

(Fri)i: Oripx - Fij, yri +ri =0 where (Yi)i
J

are auxiliary integer nunber variables. W
renmove all the equations (F: i) which are
identities.
Does at | east one equation (F ;) exist? If it
does not, wite the general integer solution of
the system substituting ki, kz, ... for all the
variables fromthe right termof each expression
representing the value of the initial unknowns
of the system Stop.
(A) Divide each equation (F¢,i) by the maxi nmal
co-divisor of the coefficients of their

unknowns. If the quotient is not an
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i nteger nunber for at |east one i, then the
system does not admt integer solutions.
St op.
(B) Sinplify--as in m-all the fractions from
the relations (E . i)i.
Does it exist i, with the nodule 1?
If it does not, go on to step 8.
If it does, find the val ue of x; fromthe
equation (Fﬁio); wite (T;) for this relation and
substitute it (where it is possible) in the
relations (E,i), (+t-1), (H), (&) for all i, t,
h and g. Renove the equation (Fﬁio). Consi der

f: =f +1, t: =t + 1 and go back to step 3.

Calculate a = mn {00 Fij, ermdFHZL

iy ja2
0 < W< O rnz[ﬂ and determ ne the indices i
j1, j2 as well as the r for which this m ni mum
can be obtained. (Wen there are nore variants,

choose only one).

ain{-l-r
(A Wite Xj, = Zn - ([T Xj where zp is a
A2
new i nteger variable; relation (H).

(B) Substitute the letter (where possible) in
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the relations (E.i), (Fi.i), (T, (Hv-1),
(&) for all i, t, h and g.

(C Consider h: =h + 1

10. (A If a = 1, go back to step 4.

(B) If a =1, calculate the value of the
vari abl e x; fromthe equation (F¢ );
relation (Cg). Substitute it (where
possible) in the relations (E.i), (T), (H),
(&-1) for all i, t, h and g. Renobve the
equation (F¢,i). Consider g: =g + 1

f: =f + 1 and go back to step 3.

The correctness of algorithm 3

Nn» '
Lemma 5. Let i be fixed. Then ( O rijx; + ri)/a
) =N
(with all rij, ri, ai, N1, nz2 being integers, ni < nz A # 0

and all x; being integer variables) can have integer val ues

if and only if (ri%, e Tiny A)lri.

Pr oof

The fraction fromthe enunciation can have integer

N>
values if and only if there is az ¢ Zso that ( O ryjx +
J =M
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Ny
+ri)la =2 o O rijX; - ai Z +71; =0 whichis a linear
) =N
equation. This equation admts integer solution

@(rinl, C ey rinz, a) O,

Lenma 6. The algorithmis finite. It is true. The
al gorithmcan stop at steps 1, 5 or substep 6(A). (It
rarely happens to stop at step 1). An equation after
another are gradually elimnated at step 4 and especially
7 and 10(B) (F¢,i)--the nunber of equations is finite. |If
at steps 4 and 7 the elimnation of equation may occur
only in special cases, elimnation of equations at the
substep 10(B) is always true because, through steps 8 and
9 we get toa =1 (see [5]) or even lemma 4 (fromthe
correctness of algorithm?2). Hence, the algorithmis
finite.

Theorem of Correctness. The algorithm 3 correctly

cal cul ates the general integer solution of the system (1).

Pr oof

The algorithmis finite according to lemma 6. It is

obvious that if the system does not have solutions in R
it does not have in Z" either, because Z" <« R' (step 1).

The variables f, t, h, g are counter variables and are
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meant to nunmber the relations of the type E, F, t, H and
G respectively. They are used to distinguish between the
rel ati ons and make the necessary substitutions (step 2).
Step 3 is obvious. Al the coefficients of the unknowns

being integers, each main variable xi will be witten:

Xi = (Q CijXj + Ci)lai ,
J

whi ch can assune the formand conditions required in this
step. Step 4 is obtained from3 by witing each fraction
equal to an integer variable y¢; (this being xi ¢ 2).

Step 5 is very close to the end. If there is no fraction
anong all (E i) it nmeans that all the main variables x

al ready have values in Z, while the secondary vari abl es of
the systemcan be arbitrary in Z, or can be obtained from
the relations T, Hor G (but these have only integer
expressi ons because of their definition and because only

i nt eger substitutions are nmade). The second assertion of
this step is neant to systemati ze the paraneters and
renunber; it could be left out but aesthetic reasons
dictate its presence. According to lemma 5 the step 6(A)
is correct. (If a fraction depending on certain

paraneters (integer variables) cannot have values in Z,
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then the main variable which has in the value of its
expression such a friction cannot have values in Z either;
hence, the system does not admt integer systens). This
6(A) also has a sinplifying role. The correctness of step
7, trivial as it is, also results from[4], and the steps
8-10 from[5] or even from al gorhythnus 2 (lemma 4).

The initial systemis equivalent to the "systeni from
step 3 (in fact, (E,i) as well, can be considered a
systen). So, the general integer solution is preserved
(the changes of variables do not prejudice it (see [4],
[5], and also lemma 2 fromthe correctness of algorithm
2)). Froma system mxn; we forman equival ent system
Mi+XNiss Wth my < m and niypx < nj.  This algorithm works
simlarly to algorithm 2.

Exanple 3. Enploying algorithm3, find an integer

solution of the follow ng system

3X1 + 4Xx> + 22X4 - 8xs = 25
6x1 + + 46X4 - 12X5 = 2
4X, + 3X3 - X4 + 9X5 = 26
Sol uti on
1. Conmon solving in R, it follows:

23X4- 6X5- 1



X, = [
- -3
X4+2X5+24
X, = [
4
11X5+2
X3 = D:DI'II
3

2X4-1
X1 = -TXa+2Xs5 + m
-3
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(E11)



5.
6.

7.
rel ation

X4+3X5
X2 = 6 + [ (El
4
X5+2
X3 -4xs + [ (E
3
2X4 + 3Y11 -1=20 (F,
X4 + 2Xs - 4y =0 (Fs,
X5 - 3y13 + 2 =0 (Fl,
Yes.
Yes: ( 35|:|: 1. Then x 5 = 3y13 - 2, t he
(T1). Substituting it in the others, we get:
2X4-1
X1 = - TXyt 6y13-4 + (0 (El
-3
X4+6Y13- 4
Xo = 6 + [ (Es,
4
3yi13- 242
X3 = -12y.3+8 + [ (Ex
3
Renmove the equation (Fy3).
Consider f: =2, t: = 2; go back to step 3.
2X4-1
X1 = - TXy4t 6y13-4 + (0 (EZ

-3
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.2)

.3)

1)
2)
3)

1)

2)

.3)

1)



X4+2Y13
X2 = Y13+5 + DIDID
4
X3 = -11ly,5+8
2X4+3y21' 1 =0
X4 + 2y¥13 - 4y = 0
Yes.

Yes. Lr,,00= 1.

relation (T.).

get:
X1 = -28y22
X2 = Y22
X3 =

Renove t he

Consi der f:
X1 = -22y13
X2 = Yi3
X3 = -11y13

2y13 + 2yz + 3Ya1 -

+ 20y13- 4 +

+ Y13+5

-1 1y13+8

equation (F2).

= 3, t:

- 3OY22-4 +

+ y22+5

+8

1 =20

Substituting it

-4y13+8y,,-1
(T
-3

- 2y13+2yo0-1
(I [T
-3
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(Ez2)

(Ez3)

(F21)
(Fz2.2)

W obtain x4, = -2yi3 + 4y,,,

in the others we

(Ez1)'

(B2’
(Ez3)'

= 3 and go back to step 3.

(Es1)

(Es.2)
(Es3)

(Fs1)
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Yes.

No.
a=1 and in=1, j1 =31, j, =22 and r = 1.
(A) Y22 = z1 - Yya, relation (H).

(B) Substituting it in the others we get:

- 2Y13+271- 2y31- 1

X1 = - 22y13 -30z, + 3OY31- 4 + ([ ( ES 1) I
-3

X2 = Yiz + Z1 - Y31+ (Es 2)'

X3 = -11y3 +8 (Es.a)'

2y13 + 2z, + Y31 - 1 =0 (F3 1)I

Xs = -2yi13 + 4z, - 4yis (T2)'

(C Consider h: =2
(B) ys1 =1- 2yi3 - 2z4, relation (G).

Substituting it in the others we get:

X1 = -40yis - 92z, + 27 (Es 1)
X, = 3yizs + 3z + 4 (BEs2)""
X3 = -11lyis + 8 (Es3)"’
Xs = 6yis + 12z, - 4 (T2) "
Y22 = 2yi3 + 3z, - 1 (H)'

Renove the equation (Fs1).

Consider g: =2, f: = 4 and go back to step 3.



3 X1 = -40y13 -
X2 = 3yiz +
X3 = -11y13
4. --

5. No. The general

systemis:
X1 = -40k; - 92k, + 27, from (Es 1)
Xy = 3k; + 3k, + 4, from (E42)
Xz = -11k; + 8, from (E,3)
X4 = 6k: + 12k, - 4, from(Ty)"'
X5 = 3k - 2, from (Tl)
where ki, k2 ¢ Z

Al gorithm 4

| nput

A linear system (1) with not all aj; = 0.
Qut put

92z, + 27
321 + 4
+ 8

99

(Es1)
(Es,2)
(Es5)

i nteger solution of the initial

We decide on the possibility of an integer solution

of this system If it

i nt eger sol ution.

Met hod

IS possible, we obtain its general
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(A) Dvide every equation i by the maxi mal co-
di visor of the coefficients of the
unknowns. If the quotient is not an
integer for at |least one i, then the
system does not admt integer solutions.
St op.

(B) |If there is an inequality in the system
then it does not admt integer solutions.

(© In case of repetition, retain only one
equation of that kind.

(D) Renove all the equations which are

identities.

Calculate a = min {[&;Ll aj; = 0} and determ ne
)

the indices io, jo for which this mninum can be

obtained. (If there are nore variants, choose

one, at random)

If a » 1, go on to step 6.

If a =1, then:

(A) Calculate the value of the variable Xj
fromthe equation io; wite this relation
(W) .

(B) Substitute this relation (where possible)

in all the equations of the systemas well
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as in the relations (W-1), (H) for all v
and h.

(© Renove the equation io fromthe system

(D) Consider v: = v+1.

Does at | east one equation exist in the systen?

(A If it does not, wite the general integer
solution of the system substituting
ki, kg, ... for all the variables fromthe
right term of each expression representing
the value of the initial unknowns of the
system

(B) If it does, considering the new data, go

back to step 2.

Wite all ai ] # Jo and mo under the form

aig =aig, Gigo*tori, with [@d iojD< @a iojD;

bi =a; q_ +ri, wthi; O<@,;; O
0 00 0 0 0 00
Witex; =- O g x +0q +tpn relation
0 H H 0
J#)o

(H). Substitute (where possible) this relation
in all the equations of the systemas well as in

the relations (W), (H) for all v and h.
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8. Consi der

Xj, * = th, h: = h + 1,

a%j =Trij, ] #o

alj :+aij ’ bl = +ry
00 — 00

and go back to step 2.

The Correctness of Algorithm4

This al gorithm extends the algorithmfrom [ 4]
(i nteger solutions of equations to integer solutions of
linear systens). The algorithmwas strictly denonstrated
in our previous article; the present one introduces a new
cycl e--having as cycling variable the nunber of equations
of the system-the rest remaining unchanged; hence, the

correctness of algorithm4 is obvious.

Di scussi on
1. The counter variables h and v count the
relations H and V, respectively, differentiating
them (to enabl e the substitutions);
2. Step 2 (A+B) + (Q) is trivial and is nmeant to
sinplify the calculus (as algorithm 2);

3. Substep 5(A) has aesthetic function (as all the
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al gorithns described). Everything el se has been
proven in the previous chapters (see [4], [5],

and al gorithm 2).

Exanple 4. Let us use algorithm4 to calculate the

i nteger solution of the follow ng |inear system

Sol uti on

1
1
N

3X1 - TX3 + 6X4

4x, + 33X + 6Xs4 - BXs 19

a=3andi =1, ] =1

3 1. Go on to step 6.

-2 =300 - 2

X1 = 3X3 - 2X4 + ti1, relation (H). Substituting

it in the second equation we get:

4t 1 + 3X, + 12X3 - X4 - Bbxs = 19

Xi: =tq, h: =2, a;: =0, as: = +2, as = 0,
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= +3, b: = -2

Go back to step 2.

The equi val ent systemwas witten:

+ 3ty

+ 3X3 = -2

4t 1 + 3X, + 12X3 - X4 - Bbxs = 19

(B)

(O
(D

Yes.

+ 3
- 2

X3 = -

e

2

2

Then: X4 = 4t1 + 3X2 + 12Xx3 - 5x5 - 19,
relation (Vi).

Substituting it in (H), we get:

X1 = - T7ti1 - 6X2 - 21x3 + 10xs + 38, (H)

Renove the second equation of the system
Consider: v: = 2.
Go back to step 2.

quation + 3t; + 2x3 = -2 is left.
and i =1, ] =3
, go to step 6.

+2 02 -1
+2(-1) +0

2t + t2 - 1, relation (H).

Substituting it in (H)', (Vi), we get:
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X1

X4

X3.

35t -
- 20t + 3x, + 12t, -

= to,

6X2 -

= 3, aii

21t, + 10x5 + 59

(the others being all =

The equation -5; + 2t, = 0 was obt ai ned.

a

1

(A)
(B)

Renove the first equation fromthe system

(D) v: =
No.
systemis:
X1 = 49k,
Xo> =

X3 = - 3K
Xs = -28k;

1, and i = 1,

1

Then,

After substitution,

X1

X4

X3

The gener al

t: = 2t

49t , -

3t»

3

j

=1

= -1,
0).

5Xs5 -

aiz.

31

= +2, bl:
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(H)'"".
(V)"

=0

Go back to step 2.

relation (V).

-28t, + 3x, -

we get:

5Xs5 -

- 6k, + 10ks + 59

k>

+ 3k, -

5ks -

31

6x> + 10xs + 59

31

(H)"

(Vi)' ",
(H)'

i nteger solution of the initial
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X5 = k3

where (ki, ko, ki) e Z°
St op.

Al gorithm 5

| nput

A linear system (1).

Qut put

We decide on the possibility of a integer solution of
this system If it is possible, we obtain its general

i nt eger sol ution.

Met hod
1. W solve the common systemin R. If it does
not have solutions in R', then it does not have
solutions in Z" either. Stop.
2. f =1, v=1 h=1
3. Wite the value of each main variable x; under
the form

(Ei)i: X zquUM +(L'*(anxj+ ri)/ ai,
J J

with all qij, qi, rij, ri, a fromZ, so that all
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Oriy U< Oa0) OrO< OAL Ao # 0 (Where all x;'s
of the right termare integer variables: either
fromthe secondary variables of the system or
t he new variables introduced wth the
algorithm. For all i, we wite M, = ai
(Fe,i)i: Ol’inJi - rij VY&,i tri =0, where

j f
are auxiliary integer variables. Renove all the
equations (F; i) which are identities.
Does it exist at |east one equation (F)? |If
it does not, wite the general integer solution
of the system substituting ki, kz, ... for all

the variables of the right nmenber of each

expression representing the value of the initial
unknowns of the system Stop.

(A) Divide each equation (F¢,i) by the maxi nal
co-divisor of the coefficients of their
unknowns. If the quotient is not an
integer for at |least one io, then the
system does not admt integer solutions.
St op.

(B) Sinplify--as previously ((A)) all the
fractions in the relations (E . i)i.

Calculate a = mn {[0;L] ri; = 0}, and determ ne
)
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the indices ig, jo for which this mnimmis
obt ai ned.
If a » 1, go on to step 9.

If a = 1, then:
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(A) Calculate the value of the variable x,i0
fromthe equation (Fi); wite (W) for
this relation.

(B) Substitute this relation (where possible)
inthe relations (E. i), (W+), (H) for all
i, v and h.

(© Renobve the equation (F¢ ).

(D) Consider v: =v +1, f: = f + 1 and go back

to step 3.

9. Wite all Fii ] # jo and rig under the form

Fijg = ai ® Qi +rij, W th miojD< Oaild

rij = _ ®Qq +r; wth@; O< Oyl
0 0 0 0 0

10. (A Wite Xj = - o g ; ® x; + Qi + thq,
0 T 0 0
] #)o

relation (H).

(B) Substitute this relation (where possible)
inall the relations (E.i), (Fr.i), (M),
(Hh-a) .

(C Consider h: = h + 1 and go back to step 4.

The correctness of the algorithmis obvious. It

consists of the first part of algorithm3 and the end part
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of algorithm4. Then, steps 1-6 and their correctness
were discussed in the case of algorithm 3. The situation
is simlar with steps 7-10. (After calculating the real
solution in order to calculate the integer solution, we
resorted to the procedure from5 and algorithm5 was
obtained.) It nmeans that all these insertions were proven

previ ously.

Exanple 5
Using algorithmb5, let us obtain the general integer

solution of the system

I
o

3X1 + 6X3 + 2X4

4Xo - 2X3 - Ixs5 = -1

Sol uti on

1. Solving in R, we get:

- BX3- 2X4
X1:|I|:|I|I|:|:|
3
2X3+7Xs5-1
x2:D]]]I[IID
4
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-2X4
(Elyl) . X1 = 2X3 + [0

3

2X3+3X5- 1
(E1 2) : Xo = X5 + [ O]

4
(Fi1) @ -2Xa - 3y =0
(Fi2) : 2Xx3 + 3xs5 - 4y;, - 1 =0
Yes
i =2and ig =2, jo=3
2 1
3 =21+ 1
-4 =2 @ (-2)
-1 =20 -1
X3 = -Xs + 2y12 + t1, relation (H). After
substitution:
-2X4
(BEi1)' @ X1 = 2Xs - 4y, - 2t1+DII£D
X5+4y12+2t -1
(E12)' : X2 = Xs + [
4

(Fi2)' @ Xs +2t; - 1=0

Consider h: = 2 and go back to step 4.

(Fl,l)I © o -2X4 - 3y11 =0

111
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(F1,2)
Yes

a=1
(A)
(B)

(O
(D

(E21)

(Ez2)
(F2,1)
Yes

a =2
2 =1

-3 =

e 2t1+X5-1:O

and io =2, jo =5
Xs = -2t; + 1, relation (Vi)

Substituting it, we get:

-2X4
(Elyl)”: X1:-6t1+2- 4y12 + [0
3
(Elyz)”: X2:-2t1+1+ Y12
(H)* Xz = 3tp - 1+ 2y

Renmove the equation (Fyi2).
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Consider v = 2, f = 2 and go back to step

3.

-2X4
X1 = -6t - 4y, + 2 + [

3
X2 = -2t1 + yi2 + 1

-2X4 - 3y21 =0

andiozl,jo=4

2 (1) - 1
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N o ok

(A X4 = -y21 + 1ty relation (H).
(B) After substitution, we get:
2y21-2t2
(Ez1)' @ X1 = -6ty - 4y, + 2+ [
3

(F2,1)" ¢ -ya1 - 2t =0

Consider h: = 3 and go back to step 4.

(Fz1)" ¢ -ya1 - 2t2 =0

Yes

a=1andio =1, jo =21 (tw, one).
(A Y21 = -2ty relation (vy).

(B) After substitution, we get:

(Ezyl)II . X1
(H) " 1 X4

-6btq - 4y12 - 2t + 2

3t>

(© Renobve the equation (Fz ).

113

(D) Consider v =3, f = 3 and go back to step

(Es,1) : X1 = -6t; - 4y, - 2t, + 2

—
aJ
N
-
x
N
|

= -2t, + Y12 + 1
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5. No. The general integer solution of the system
iS:
X1 = -6k - 4k, - 2ks + 2 , from (Es1);
X2 = -2ks + k3 + 1, from(Es2);
xs = 3ki + 2k, -1, from(H)';
X4 = 3ks, from (H)';
Xs = -2Kki + 1, from(V.);

where (ki, ki, ki3) e Z
St op.
Note 1. Algorithms 3, 4 and 5 can be applied in the
calculation of the integer solution of a |linear equation.
Note 2. The algorithns, because of their form are
easy to introduce in the conputer.

Note 3. It is up to the reader to decide on the

algorithmto use. Good |uck
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