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Abstract 

 
Quantum Chromodynamics (QCD) is a renormalizable gauge theory that successfully describes the 

fundamental interaction of quarks and gluons. The rich dynamical content of QCD is manifest, for example, 

in the spectroscopy of complex hadrons or the emergence of quark-gluon plasma. There is a fair amount of 

uncertainty regarding the behavior of perturbative QCD in the infrared and far ultraviolet regions. Our work 

explores these two domains of QCD using nonlinear dynamics and complexity theory. We find that local 

bifurcations of the renormalization flow destabilize asymptotic freedom and induce a steady transition to 

chaos in the far ultraviolet limit. We also conjecture that, in the infrared region, dissipative nonlinearity of 

the renormalization flow supplies a natural mechanism for confinement.  

 

1. Introduction and motivation 

As a building block of the Standard Model for particle physics, QCD is a successful 

gauge theory describing the coupling of quarks and gluons [1-3]. It has several defining 

features, namely: a) asymptotic freedom (the interaction becomes weaker at short 

distances and it can be determined from perturbation theory), b) around 200 MeV , 

confinement sets in and the particle spectrum consists exclusively of color neutral states, 
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c) QCD exhibits spontaneous chiral symmetry breaking due to non-vanishing quark 

masses [1-3], d) at high temperature or high density, QCD is conjectured to sustain phase 

transitions leading to quark-gluon plasma and the restoration of chiral symmetry [3]. Due 

to asymptotic freedom, perturbative QCD is reasonably effective in the high-energy limit 

but fails to provide accurate predictions in the infrared limit, where the theory becomes 

strongly coupled [1-4].  The infrared regime of QCD is a typical example where non-

perturbative methods become compelling. Since closed-form solutions of field theory 

are, in general, difficult to extract and manage, lattice-based computations and numerical 

approximations are among the most frequently used techniques for investigation [2]. Less 

developed are methods based on nonlinear analysis and dynamical systems theory, 

whereby knowledge of explicit solutions is no longer critical. From this standpoint, it can 

be stated that nonlinear dynamics offers an attractive theoretical laboratory for probing 

the asymptotic dynamics of QCD. With regard to field theory in general, this is also true 

near any boundary of the stability region where randomness becomes the driving factor 

[5] and the emergence of bifurcations and complex behavior is a likely occurrence. It is 

in this region where traditional procedures are questionable and one usually appeals 

instead to alternative methods such as the ones provided by the renormalization group 

(RG) [6]. Starting from these considerations, our goal is to develop a first-order analysis 

of the RG flow near the boundary of the stability region. The sustained contribution of 

perturbations to the RG flow is modeled as follows: a) since QCD is asymptotically free, 

we assume that perturbations develop progressively but smoothly in the ultraviolet 

region,  b) in contrast, because QCD becomes strongly coupled in the infrared, we 

assume that perturbations are best modeled here as random fluctuations of Levy type. We 
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caution that our work has an introductory nature and does not claim to provide a 

comprehensive and rigorous coverage of the topic. As the contribution of fluctuations 

and nonlinearities becomes increasingly predominant in the asymptotic regime of QCD, a 

complete analysis needs to carefully account for a variety of factors that are deliberately 

left out in our derivation.       

The paper is organized according to the following plan: section 2 examines the QCD 

dynamics in the far ultraviolet region; the impact of Levy noise on the mechanism of 

infrared confinement is outlined in section 3. The last section contains a brief summary 

of results. Appendix A includes a condensed presentation of RG equations in the context 

of perturbative QCD. 

2. QCD dynamics in the far ultraviolet region 

2.1 Perturbed RG flow equations 

We start from the RG equations for coupling strength and quark masses [7] 

2 3

0 1( ) ( )s
s s

d
b n b n

dt


     

(1) 

2 3

0 1 2[ ( ) ( ) ( ) ]s s s
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m c n c n c n NP

dt
        

Here, n  stands for the number of quark flavors and  

                                                         
0

ln( )t





                                                           (2) 

represents the sliding scale, where the momentum cutoff   is normalized to an arbitrary 

reference value 0  such as the strong interaction scale ( 0 220 MeV  ). The non-

perturbative term in the mass flow is denoted by NP  and is typically presumed to vanish 
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faster than any power of the coupling [8]. In the presence of generic perturbations, (1) 

becomes 

2 3
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s s s

d
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dt
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       
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Let us assume that the two additive contributions may be expanded in power series of a 

small parameter that defines the perturbation amplitude ( 1 ) 

2

0 1 2( ) ( ) ( ) ( ) ...s s s s             

(4) 
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For simplicity we take  

( ) ( ) 0n s n m    , if 1n   

(5) 
2

1( )s s   ,  1( )m m    

(3) is thereby well approximated by 

                       2 3 2 3
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s s s s

d
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


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                                  2 3

0 1 2[ ( ) ( ) ( ) ]s s s

dm
m c n c n c n

dt
                                        (6b)                                    

in which 

                                                    0( ) ( )b n b n                                                          (7) 

2.2 Linear stability analysis 

Apart from the trivial solution represented by the fixed point FP0 = [ 0, 0s m    ], the 

non-trivial fixed point of (6a) is given by FP = [
1

( ), 0s

b
m

b
     ]. Linearizing around 



 5 

FP0, we find that the Lyapunov exponent is vanishing regardless of the numerical value of 

coefficients 0 1,b b  and, implicitly, regardless of the number of flavors n . On the other 

hand, the Lyapunov exponents corresponding to FP are [9-10] 

                                                   
2

1,2

4

2

 


  
                                                     (8)       

in which 

2 2 3
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2 3

1 1 1 1

b c b c b c b

b b b b

           

(9a) 
2 2 3

0 1 2

2 3

1 1 1 1

( )
b c b c b c b

b b b b

          

To streamline the analysis, we next assume that all terms and factors dependent on the 

" "c  coefficients are negligible. Following the general guidelines of nonlinear analysis, 

we are interested in the so-called borderline cases (i.e. centers, non-isolated fixed points, 

degenerate nodes and stars). These are determined by the numerical value of the 

characteristic parameter [10] 

                                                    2 4R                                                                 (9b)     

Fig. 1 graphs the variation of R  as a function of n  as R  approaches zero (red = 0.1, blue 

= 0.05, black = 0.001). It confirms that the dynamics of the RG flow becomes bordeline 

as the number of quark flavors approaches 16crn   and QCD reaches the point of losing 

its asymptotic freedom [11].  
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           Fig. 1: Characteristic parameter   versus the number of quark flavors n  

2.3 Bifurcation of the fixed point  

We now wish to study the behavior of the nontrivial FP under the influence of a steadily 

increasing perturbation whose amplitude augments the noise terms previously considered 

( 1 ). The origin of this perturbation may be related to thermal fluctuations (if the 

analysis is carried out at a high-temperature setting) or to the presence of a large number 

of high-order diagrams associated with the ultraviolet limit. To this end, let us add an 

infinite series of terms to the coupling flow equation (6a), that is 

                                   2 3

1

0

( ) ( ) ( ) is
s s i s

i

d
b n b n n

dt



   





                                        (10)       

We assume next that only the first two terms in the series (10) are non-vanishing and 

weakly dependent on n . Following the notation of [9], we obtain  

                                     2 3

1 2 1 2 3( )s
s s s

d

dt


                                             (11)     

Here, 1,2,3  denote the so-called Lyapunov values which are respectively given by 
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2

1

1

6b

b

   , 2 b  , 3 1b    .The FP is stable since 3 0  . The set of scalars 1,2  

denote the governing parameters and measure the deviation of an arbitrary point in 

parameter space from origin 1 2( 0, 0)   . Under these circumstances, the bifurcation 

curve has a cusp profile and is represented by [9-10] 

                                 
2 2 1

1

2 ( )
...

3 3

b 


 
  ,      2 1( ) 0b                                    (12) 

Fig. 2 plots the variation of the Lyapunov values as a function of n . Fig. 3 shows the 

emergence of a cusp bifurcation in the 1 2( , )  plane when 1b  is computed at 6n  (see 

(A2)). Depending on the location of the governing parameters in the 1 2( , )   plane, the 

stable FP stays unchanged or splits into two or three equilibria. It follows that, near the 

non-trivial FP, irregular behavior of the coupling flow is likely to develop through a 

progressive cascade of cusp bifurcations. 

2 4 6 8 10 12 14 16
3

2.4

1.8

1.2

0.6

0

0.6

1.2

1.8

2.4

3

NUMBER OF QUARK FLAVORS

L
Y

A
P

U
N

O
V

 V
A

L
U

E
S

0

1 n( )

2 n( )

3 n( )

n

 

    Fig. 2: Lyapunov values versus the number of quark flavors n  

 



 8 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

1.2

0.9

0.6

0.3

0

0.3

0.6

0.9

1.2

1.5

0
1U 2( )

1L 2( )

2  

           Fig 3: Cusp bifurcation in the 1 2( , )   plane 

3. Levy noise as possible mechanism for confinement 

As noted in the first section, the infrared limit is characterized by large fluctuations of the 

RG flow induced by the strong-coupling regime of QCD. To preserve maximum 

generality of our approach and using arguments related to the ubiquity of Levy flights in 

stochastic transport processes [12], we model these fluctuations with the help of the 

generalized Langevin equation [13]  

                                               ( ) ( )s
s s

d
t

dt



                                                      (13)          

Here, ( )t  represents  -stable Levy noise and the dissipative non-linearity ( )s  is 

given by 

                                             2 3

1 1( ) ( ) ( )s s sb n b n                                                  (14) 

Under these conditions, the asymptotic probability distribution function for 1s  is 

given by [13] 



 9 

                                                 
1

( , )s

r s

p r
b





                                                       (15)  

in which 0rb   stands for the thr order coefficient of (14) and 

                                                       1 r                                                            (16) 

It follows that 2

s  stays finite if 2crr r    , that is, 0r   if 2   and 2r   if 

0  . We conclude that the coupling flow driven by stable Levy noise remains confined 

if its expansion is taken at least to the second loop approximation. This ansatz suggests a 

plausible mechanism for confinement in the IR region of QCD: instead of reaching a 

regime of unbounded variations in interaction amplitude, higher order radiative 

corrections generated from ( )s   dissipate the energy imparted by Levy noise. As a 

result, quarks and gluons form bounded states with a nearly-constant average coupling 

strength.  

It is instructive to note that this conjecture fits well various lattice studies and 

phenomenological theories of quark-antiquark ( qq ) interaction, such as the Richardson 

or Cornell models [2]. For example, the Cornell model assumes that the long-range part 

of the static qq  potential has the form 

                                                  0( )
a

V r br V
r

                                                        (17)                                          

where 0, ,a b V  are constants. The coefficient b  is commonly referred to as the “string 

tension” by comparison with string theories of hadrons. The linear term of this potential 

( )br  dominates the interaction at large distances where it models a color-flux tube of 

constant energy density.  
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It is also instructive to remark that, in a certain sense, the mechanism of confinement 

produced by Levy fluctuations is similar to the phenomenon of Anderson localization in 

which quantum waves become confined in random potentials [14]. 

We close this section with an evaluation on how statistical moments of coupling 

strengths and quark masses depend on the Levy parameter  . For this purpose, it is 

sufficient to solve (1) in closed-form and use the asymptotic probability distribution 

function (15) to determine the expectations and variances for coupling strength and mass. 

Fig. 4 plots the expectation of the coupling strength ( 1 sM  ) along with its variance 

( sVar ) as functions of the Levy index  , whereas Fig 5 plots the same behavior for the 

quark mass. The number of quark flavors is assumed to be 6n   in both cases. It is seen 

that the increase of variances with the Levy parameter is significantly faster than the 

corresponding increase of expectation values.  
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4. Summary and discussion 

Using the analytical tools provided by nonlinear dynamics and complexity theory, we 

have examined the effect of the renormalization flow in the asymptotic regions of QCD. 

It was found that the steady addition of perturbations destabilizes asymptotic freedom 

and induces transition to chaos in the far ultraviolet limit. At the other end of the energy 

scale, dissipative nonlinearity of the renormalization flow provides a plausible 

mechanism for confinement.  

In section 1 we pointed out the introductory nature of our treatment. QCD is a rich and 

complex theory that has the potential of exhibiting a large spectrum of behaviors. It is 

apparent that the outcome of the set of coupled nonlinear equations describing the RG 

flow depends strongly on how the model is formulated and how the boundary conditions 

are set. To be specific, 

1) there are two dependent control parameters of the RG flow: the momentum scale 

 (or, equivalently, the dimensional regularization parameter 4 d   [1, 6]) and the 
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number of fermion flavors ( ) ( )n n n t   . Obviously, a simplified setting is to assume 

( ) ( )n n n t    is a slowly varying function and carry the analysis with a single control 

parameter defining the energy scale at which the physics is probed. 

2) the dimensionality of the flow plays a critical role: a planar system of equations (such 

as the one for coupling and masses) does not lead to deterministic chaos. In contrast, the 

3D system containing the flow of fields and mixing angles leads to a much richer 

spectrum of behaviors, including deterministic chaos.  

3) addition of statistical perturbations leads to systems of coupled stochastic nonlinear 

equations. These have, in general, a complex array of possible dynamical patterns. In this 

case all parameters (fields, masses, mixing angles, correlation functions) become random 

variables and their behavior needs to be formulated in terms of probability distribution 

functions. The ability to formulate the correct noise model is critically important. For 

convenience, we have limited the discussion to the generic case of Levy noise. 

4) finally, the presence of long-range interactions in space and time (extended spatial 

coupling, time-memory, delayed interactions) yields a problem with coupled multiple 

time-scales. The proper way to deal with this setting is to use the tools offered by 

fractional calculus and fractional dynamics [15-22] or, equivalently, with the formalism 

of non-extensive statistical physics. [12]. 

Appendix A 

Within the framework of perturbative QCD, the flow of the effective coupling strength 

with the sliding energy scale   is governed by the beta-function: 

                                                   ( )s
s


  







                                                        (A1) 
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where 

2 3 4 5

0 1 2( ) ( )s s s s sb b b O           
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 ,      
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2 3

5033 325
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n n

b


 
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and n  is the effective number of quark flavors [7]. Likewise, the scale dependence of a 

running quark mass ( )m   is represented by: 

                                               
( )

( ) ( )s

dm
m

d


   


                                                (A4) 

in which 

2 3 4

0 1 2( ) ( )s s s s sc c c O          

(A5) 

0

2
c


 ,    1 2

101 5

12 18
n

c




 ,    2
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1 2216 160 140
[1249 ( (3)) ]

32 27 3 81
c n n


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