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The application of the Lorentz transformation, which assumes planar character of electromagnetic 
waves, to the points of the front of a spherical electromagnetic wave gives a distorted picture of the 
physical reality. The expressions of Doppler effect and aberration, as well as the transformation law of 
the wave fronts for spherical electromagnetic waves, essentially different from those for planar 
electromagnetic waves, are obtained. Some consequences are discussed. Particularly, the necessity of 
introduction of  the “natural” units of length (changing in the same way as the lengths of 
electromagnetic waves) for measuring distances from moving points to the fronts of electromagnetic 
waves, as well as of  the “real” distance covered by a moving point relative to a stationary point 
containing the number of electromagnetic waves which is equal to the difference in the numbers of 
waves contained between the front of an electromagnetic wave and the stationary and moving points 
respectively. A revised equation for the addition of velocities is also obtained. 
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 The equation of the front of a spherical electromagnetic wave propagating 
from the origin of a stationary frame is that of a sphere:  

22222 tczyx =++ ,     (1) 
where x, y, z, and t are the space and time coordinates of a point of the wave front, and 
c is the velocity of light in emptiness.  
 According to the Lorentz transformation, in the frame with axes coinciding 
with those of the stationary frame at the instant of the start of emission of the wave 
(t=t’= 0) and moving with velocity cv β=  along axis X, the equation of the same 
wave front is: 22222 tczyx ′=′+′+′ , where   

21 β
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−
=′ ctxx , yy =′ , zz =′ , 

21 β

β

−

−
=′

c

xctt    (2) 

are the space and time coordinates of the same point of the wave front in the moving 
frame. 

In figure 1 the sphere with centre in the origin of the stationary frame, O, 
represents the wave front in the stationary frame when the clock at that point shows 
time t; O1 is the origin of the moving frame; and ctOO β=1 .  

If we try to represent the same wave front in the moving frame using equations 
(2), we will get a spheroid with centre in O’ and one of the focuses in O1, where 

21
1 β

β

−
=′ ctOO ; the long half axis of the spheroid is 

21 β−
=′′ ctCO  and the short 

half axes are equal to ctEO =′′ .   
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Indeed, according to equations (2), point ( )tO ,0,0,0  in the stationary frame 

becomes point 













−−
−′

22 1
,0,0,

1 ββ

β tctO  in the moving frame.  If we assume that the 

origin of the moving frame is in point O’, then the equation of the wave front in this 
frame is:  
    22222

1
2)1( tczyx =′+′+′− β  

where 
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−
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Figure 1. The fronts of electromagnetic waves in stationary and moving inertial 
frames. 
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At the same time we have to bear in mind that the time coordinates of the 

points of the wave front in the moving frame vary along the axis X’ from 
β
β

+

−
=′

1
1

1 tt  

at point C’ to 
β
β

−

+
=′

1
1

2 tt  at point D’.  

 
 
The design of the Lorentz transformation is to give the picture of the physical 

reality a moving observer shall have from the point of view of a stationary observer. 
But the picture that results from this transformation is dramatically different from the 
one a moving observer really gets in his frame; in other words, a moving observer 
never gets the picture of the wave front we have described above.  

According to the Lorentz transformation, when the moving clock in point O’ 

shows time 
21 β−

=′ tt , point E of the wave front in the stationary frame becomes 

point E’ in the moving frame. But the moving observer actually discovers that at that 
instant of time in point O’ the wave front is not in point E’, but in point E”, which is a 

point of the sphere with centre in O’ and radius 
21 β−

=
ctR , because  the point from 

which the emission of the wave started in the moving frame is O’. 
 Let in point E of the stationary frame a clock is placed. At the instant when the 
wave front arrives at that point the clock reads t. This fact is an invariant and must be 
observed in any frame. According to the Lorentz transformation point E is point E’ in 
the moving frame and the wave front arrives at that point when the clock there shows 

21 β−
=′ tt . That is simply impossible: a clock cannot show different times 

simultaneously. 
 The Lorentz transformation assigns unique qualities to stationary frames, 
radically distinguishing them from the moving ones: time coordinates of the points in 
stationary frames do not depend on spatial coordinates and in moving ones they do. It 
is unclear how the differences in the readings of the clocks in different points arise 
when a stationary frame starts its movement. For example, let each carriage of a long 
train have its own engine and clock (the carriages, engines and clocks are identical). 
When the train is at rest at the station all clocks on the train show the same time as the 
clocks on the station. At some instant of time the engines of all carriages are switched 
on simultaneously and the train starts moving. Why should some time later the 
stationary observers at different carriages register different differences between the 
readings of the moving and their own clocks?   

The electromagnetic waves are spherical [1], but the Lorentz transformation 
requires that those waves be planar. This is because the phase of an electromagnetic 
wave is to be an invariant, and under the Lorentz transformation the phase which is 
the same in any inertial frame is that of a plane wave [2]. It is believed that 
electromagnetic waves may be considered as planar in any small part of space [3]. 
While deriving the expressions of the Doppler effect and aberration, Einstein 
emphasizes that the source of electromagnetic waves is “very far from the origin of 
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co-ordinates”; and that “an observer is moving with velocity v relatively to an 
infinitely distant source of light” [4], obviously assuming that at far distances from the 
source of wave (i.e. at the distances that are much greater than the length of wave) the 
differences between spherical and plane waves shall become infinitesimal. Even if 
those arguments were correct, that would only mean that the Lorentz transformation is 
an approximation to the physical reality, and a more precise theory would give correct 
results for any spatial dimensions. Below it is shown that the expressions of the 
Doppler effect and aberration for spherical and plane waves maintain their differences 
even at infinity. It is not surprising that the application of the Lorentz transformation 
for the spherical fronts of electromagnetic waves gives distorted picture of the reality. 
This is, undoubtedly, the weakest point in the special relativity. The search for a better 
transformation law is necessary.  
 A correct transformation must maintain the spherical form of electromagnetic 
waves in any inertial frame. That is the requirement of the constancy of the light 
velocity in emptiness and the isotropy of space. 
 
 
 Let us get the expression of the Doppler effect for spherical electromagnetic 
waves first.  

It is obvious that in any frame all waves emitted by a source of an 
electromagnetic wave in emptiness are contained between the source and wave front 
(at any instant of time, the last wave, or a part of it just emitted, is at the source and 
the wave first emitted has just arrived at the location of the wave front). In any 
direction the distance between the source and the front of the emitted wave is equal to 
the sum of wavelengths contained between them.   

Let in figure 1 the source of wave is fixed in the origin O1 of the frame moving 
with a constant velocity v=βc.  

If the wave emitted is a spherical one, then all waves emitted in time t in the 
stationary frame, 0n′ , (which is equal to the number of oscillations within the source of 
wave) will be contained in the space between the point O1 and sphere O. Assuming 
that the light velocity is the same in both frames, for some point A of the wave front in 
the stationary frame we have:   

θλβθβλβθβ 0
2

00
2

1 cos21cos21 nnctAO ′=+−=+−= ,  (3) 

where 0n  is the number of oscillations within the source of wave in the interval of 
time t in the frame in which the source of wave is at rest; 0λ  is the length of the 
emitted wave in the same frame; θλ  is the length of the wave emitted in 
direction θ=∠ 1AOO  relative to the direction of the movement of the source in the 
stationary frame.  

From (3):  

'
0

2
00 cos21

n
n βθβλ

λθ
+−

= .    (4) 

Sometimes it is more convenient to use angle α=∠ CAO1   instead of angleθ . 
Angle α  is the one at which, from the point of view of the stationary frame, the ray 
OA (or the point A of the wave front) propagates in the moving frame connected with 
the source. If we assume that the ray OA propagates through an imaginary moving 
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tube of a very small diameter, then angle α  is the slope of the tube as seen from the 
stationary frame.  

2cos21

sinsin
βθβ

θα
+−

=     (5) 

So, instead of (4) we can use the following equation: 

0

22
00 cossin1

n

n

′






 −−

=
αβαβλ

λα . 

If the wave emitted from the moving source in O1 represents a thin ray of 
plane wave (i.e. the front of wave lies in a plane perpendicular to the direction of 
propagation of the ray) propagating in direction OA, then AK is the line of intersection 
of the plane of the picture with the plane of the wave front at some instant of time t in 
point O. In this case 

( ) ( ) θλθβλθβ 0001 cos1cos1 nnctKO ′=−=−= , 
and 

( )
0

00 cos1
n

n
′

−
=

θβλλθ .    (6) 

 From equations (4) and (6) it is evident that in regard to Doppler effect 
spherical and plane waves maintain their uniqueness at any distances. Hence, the 
adoption of the plane-wave approximation for electromagnetic waves is not justified 
and only leads to complications.  

 
 
We can consider the lengths of electromagnetic waves as natural units of 

measurement of space intervals. We have good reason to assume that any physical 
unit of measurement of distances from a moving source to the front of 
electromagnetic wave undergoes the same kind of changes as the lengths of 
electromagnetic waves:  

0

2
00 cos21

n
Un

U
′

+−
=

βθβ
θ ; 

θU  is a “natural” unit of length in  direction θ ; 0U  is a “mathematical” unit, i.e. a 
hypothetical unit which undergoes no changes. When 0→β , then 0UU →θ  i.e. 
“natural” units coincide with “mathematical” units when distances between two 
stationary points or a stationary point and wave front are measured. 

Using angle α , we have: 

0

22
00 cossin1

n

Un
U

′






 −−

=
αβαβ

α . 

 In “natural” units the distance between the moving source O1 and the front of 
wave in any direction is equal to:  

11
0

0

0

22
1 :cossin1 AO

n
nct

U
UctAO =

′
=





 −−=′ ααβαβ . 

Thus, when measuring distances from a moving source O1 to the points of the 
wave front in “natural” units, we get a new sphere with centre in O1 and radius 
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n
nRr 0′= ; or vice versa, if we assume that the front of an electromagnetic wave in 

emptiness maintains its spherical form relative to any point of reference whether 
stationary of moving, that would mean that any measuring device, including our eyes, 
uses “natural” units of measurement in the assessment of distances from moving 
points.  

 Now we have to prove that 2

0

0 1 β−=
′

n
n , as it is shown in figure 1:  

ctrHO 2
1 1 β−== . 

 Indeed, it is obvious that the spheres O and O1 intersect and for the points of 
intersection 000 λλα nn ′=′ , i.e. 0λλα = . Also, αλ01 nAO ′= , απλ +′= 01 nBO , and 

2
11 rBOAO = , where 001111 λnBOAOr ′=== ; so, 2

0λλλ απα =+ .  

Thus, for the points of intersection of the spheres: 0λλλ απα == + ; hence 

2/πα ±=  and 02/ λλ π =± . 

From 2
002/0 1 βλλπ −=′ nn  follows: 2

00 1 β−=′ nn  and 21 β−= Rr . 

Thus,    
2

2
0

1

cos21

β

βθβλ
λθ

−

+−
=  

The same expression was obtained in [5]. 
 It is obvious that 00 /τtn =  and 000 // ττ ′=′=′ ttn , where t and t’  are the 
readings of the clocks at the origins of the stationary and moving frames O and O1 
respectively, and 0τ  and 0τ ′  are the periods of oscillation within the source of wave in 
its rest frame and in the stationary frame respectively.   
 Thus 21 β−=′ tt  and 2

00 1/ βττ −=′ ; i.e. in a moving point time flows  
21/1 β−  times slower than in a stationary frame, or, what is the same, any period of 

time (e.g. the time of a complete revolution of a hand of a clock) is 21/1 β−  times 
longer in a moving point than in a stationary point.  
 It is interesting that in figure 1:  

αβ
β

22

2

11 sin1
1

−
−

= ABBA , 

which coincides with the equation of the Fitzgerald-Lorentz contraction, i.e. this 
expression is the same for spherical and planar electromagnetic waves. 
 This simple geometrical fact, which is described in [6], points also to the 
necessity of introduction of “natural” units.   
 From the point of view of the stationary frame, the sphere of radius R with 
centre in stationary point O is transformed into the sphere of radius 21 β−= Rr  with 
centre in moving point O1. This means that points A and A1 in figure 1 are the same 
points considered relative different points of reference. So, if in point A of the 
stationary frame a clock is placed, which reads τ=t , then the same clock is placed in 
point A1 of the moving frame as well and its reading must be 21 βτ −=′t . But, as 
already mentioned above, the same clock cannot show different times. That leaves the 
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only possible solution: the reading must be zero (or in other words, whatever the 
reading may be, we have to count time from that point). Thus, time coordinates of the 
points of the front of electromagnetic wave emitted from the origin of the frame at t=0 
must be zero. (If an electromagnetic wave is emitted from the origin of the frame at 

0tt = , then the time coordinates of the points of the wave front is 0tt =′  too.) Then the 
readings of the clocks in the origins of the stationary and moving frames are τ=t  and 

21 βτ −=′t  respectively. The clocks beyond those spheres show “negative” time 
(this means that the impulses that arrive at those points have been issued earlier than 
the readings of the clocks at the origins of the frames). 
  
 

Let at 0=′= tt  a moving clock O’ is in point O of the stationary frame and an 
electromagnetic wave starts emitting from the same point. After some time t the 
moving clock arrives at point A and the wave front arrives at point C. In figure 2(a) 
we can see the picture in “mathematical” units: ctOA β= , ctOC = , 

( )ctCOAC β−=′′= 1 .  
But the measurement of the distance from the moving source to the front of an 

electromagnetic wave must give the result in “natural” units; otherwise the light 
velocity would not be independent from the velocity of the source. Indeed, from the 

point of view of a stationary observer, if c
t

OC
= , then c

t

CO
≠

−

′

21 β
.  

The “natural” unit in direction CO′  is 01
1

UU
β
β

+
−

= ; so, in those units 

2

0
1

/
β−==′′ ct

UU
AC

CO . In this case (figure 2(b)) the point of wave front in 

direction CO′  is split into two points: C and C′  (relative to points O and O′  
respectively). This is the picture we should get allowing for the fact of constancy of 
light velocity.  

In the reality the points C and C′  are the same point and we get the picture 
represented in figure 2(c), where AA1  is equal to CC ′  in figure 2(b), or the picture 
represented in figure 2(d), where OO1  is equal to CC ′  in figure 2(b). 

Distances OA  and OO ′  in figure 2(a) are incommensurable, because they are 
to be expressed in different units. That means that it is impossible for both ends of 
those segments to coincide. In figure 2(c) the ends of those segments coincide in point 
O, and in figure 2(d) the other ends of those segments coincide in point A. Figure 2(c) 
may be called the viewpoint of the observer at point O and figure 2(d) the viewpoint 
of the observer at point A.  

A stationary clock at point 1A  in figure 2(c) (or at point A in figure 2(d)) shall 

show 21
1 1 β−=−= t

c
OA

tt , which coincides exactly with the reading of the moving 

clock O′ . So, by comparing the readings of the clocks, it is impossible to tell which 
one of the points 1A  and O′  (or A and  O′  in figure 2(d)) is moving.  
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Figure 2. An illustration of the effect of “natural” units. 
 (a) All distances are in “mathematical” units; (b) distance O’C’ is in 
“natural” units; (c) the real picture for the observer in point O; (d) the 
real picture for the observer in point A. 
 
 
Thus, for the observer in point O (figure 2(c)) the moving clock O′  is in point 

1A  and not in point A; for the observer in point A (figure 2(d)) the moving clock is in 
point A, but at the beginning the clock was in point 1O and not in point O. This may 
seem unbelievable and needing some additional commentaries. 

 When measuring the distance from some stationary point to a moving point by 
means of a ruler, we are substituting the distance between those two points by the 
distance between two stationary points of the ruler. We cannot be sure that this is a 
legitimate operation. The same is true for the measurements using radar: the time the 
radar impulse requires for covering the way from the radar to a point (stationary or 
moving) is equal to that from the point to radar, which is tantamount to measuring a 
distance between two stationary points. Direct measurement with a ruler or radar 
gives not the “real”, but the “mathematical” value of the distance to a moving point. 
 If a direct measurement of the distance to a moving point gives ctLOO β==′ , 
then the “real” distance is: 
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.
11

11
1

2

2
2

β

β
β

β
β

−+
=

−−
=−−=′ LLctctL  

When LL =′= ,1β .  
Thus,  

tt
c
L ′−=

′ ,            (7) 

 i.e. the difference in readings of two synchronized clocks is equal to the time required 
for light for covering the “real” distance between those clocks.  

 It must be noted that there is nothing new in this simple mathematical fact 
which follows from the special relativity as well.  

Eq. (7) is true for any velocities (even for the zero one!), as well as for any 
path of a moving point. In the case of zero velocity, i.e. if both clocks are stationary 
ones, L’ is equal to the “real” length of the path which we consider a communicating 
signal will make from one point to another.  
 Let O and A be two marks on a ruler and LOA = . Then if in point O in 

figure 2(c) the clock shows t, the synchronized clock in point A shows 
c
Ltt A −= . 

That means: if a moving clock O′  arrives from point O at point A with velocity cv ≈ , 
the difference in the readings of the clocks in O and O′  will be 

c
Ltttt A ≈





 −−=−=∆ 211 β . If the speed of the moving clock v<c, the difference in 

the readings of the same clocks will be: 
c
L

c
Ltttt A <=





 −−=−=∆ 1211

1
β . That is 

because in this case the distance covered by the moving clock is not LOA = , but 
LLOA <= 11   (we do not have to mix up the length of the ruler with the distance 

covered by the clock). For the observer in point A (figure 2(d)), the clock arriving at 

A, as well as his own clock, shows some time 1t , and 
2

1

1 β−
=

tt  time ego the clock 

was at point 1O ; if cv ≈ , then point 1O  almost coincides with point O (the left mark 
on the ruler); if v<c, then the distance covered by clock is LLAO <= 11 . Point 1O  
does not coincide with the left mark on the ruler.  
 In figures 3(c) and 3(d), we can see that the real distance covered by the clock 
is 1L  only, although, according to the ruler, the distance between the first and last 
points of the clock’s travelling is L. 
 This is an effect of the use of different units of measurement, but we can look 
at this in another way as well: instead of the movement of the clock in the frame of 
the ruler, let us consider the movement of both of them in some preferable frame, 
during which the clock O′  moving to the right from the left mark of the ruler, O, and 
the right mark, A, of the ruler moving to the left, arrive at point 1A  simultaneously 
(figure 2(c)). In reality no introduction of a preferable frame is necessary, because this 
is only an illusion caused by the use of different units of length.  
 The fact that the movement of the ruler is an illusion may be illustrated by the 
following example: let us imagine that the earth does not rotate around its axis and a 
jet is flying with velocity v along the earth’s equator. Since the speed of the jet v<c, 
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the real distance covered by it during its circumnavigation will be less than the length 
of the equator which in this case represents a ruler. This fact is due to the use of 
different units of measurement for the distances to stationary and moving points. We 
may explain this fact also by assuming that the earth is rotating with adequate velocity 
in opposite direction in a preferable frame, but this rotation will be undetectable for an 
observer on the earth’s surface; i.e. this rotation is only an illusory one. 
 To be more convincing in our reasoning let us use again the method of 
counting waves. The number of the waves emitted from a stationary source of 
electromagnetic waves in point O (figure 2(a)) in time t is 0n . If there is no moving 
point O′  in A, those 0n  waves are distributed between the source in point O and the 
point of wave front C in the following way: 0nβ  waves are located between O and A, 
and ( ) 01 nβ−  waves between A and C. If now instead of stationary point A we consider 
moving point O′ , then  between O′  and the point of wave front C there will be 

0
2'

0 1 nn β−= waves. Indeed, from the point of view of the stationary frame, 

( )
β
β

λλβ
+
−

=−=
1
1

1 0
'
000 nnAC , from which 0

2'
0 1 nn β−= . The remaining 

0
211 n





 −− β  waves are located between points O and O′ . Since between O and A, 

and between O and O′  different numbers of waves are contained, the distances OA  
and OO ′   cannot be equal to each other. It is obvious that the distances 1OA  and 

OO ′  in figure 2(c) contain the same numbers of waves. Thus, the point O′  is in point 

1A  of the stationary frame and not in point A as we obtain by means of measurement 
in “mathematical” units.  
 On the other hand we cannot exclude the possibility that some kind of 
measurement may give a “real” distance: ( )2

1 11 β−−=′ ctOO
r

; then the 

mathematical distance is 1ctOO
m

β=′ , where 
21

1 β−
=

t
t .  

We have to expect that direct measurements with a ruler or radar will always 
give “mathematical” values, while some indirect measurements (the ones which 
cannot be reduced to measurements with a ruler or radar) may give “real” values.  
 In D. Frisch and H. Smith experiment [7] there is no direct measurement of the 
distances covered by muons. So, we cannot be sure whether the height of Mt. 
Washington, H, is a “mathematical” distance covered by muons or a “real” one.  
 In the latter case, the distance covered by muons in “mathematical” units 

would be 
21

11 β

β

−−
=

HH . The time necessary for covering this distance by muons in 

the stationary and their rest frames are 





 −−

=
211 βc

Ht  and  





 −−

−
=′

2

2

11

1

β

β

c

H
t  

respectively. According to the experimental data 1910≈H m, 995.0≈β , original 
number of muons 5680 ≈n , and their half lifetime 6

0 10x5.1 −≈τ  sec. Those values 
yield t’= 0.708x10-6 sec. and the number of remaining muons, 410≈n . This value is 
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much closer to the experimental value of 412 as against the value of 422≈n  obtained 
by the authors in their calculations, but this one particular case, of course, does not 
prove anything. Only statistical analysis of series of similar experiments can give 
statistically significant answer whether our suggestion is true or not.  
 
 

Now let us find out what the front of the electromagnetic wave is like in a 
moving frame. Let in Fig. 1 the number of waves emitted from the origin of the 
stationary frame, O, during time period of t is n0 , then 00λnOA = . If this array of n0 
waves is watched from the moving frame, then for a spherical wave point A becomes 
some point A2 on the line OA:  

2

2

0

1
0021

1

cos21

β

βθβ
λθ

−

+−
=

′
==

ct
n

AO
nnAO . 

The set of points A2 for all possible directions forms the surface of a sphere 

with centre in O’ where 
21

1 β

β

−
=′ ctOO , and radius 

22
1 β−

=′=′ ctAOR . Thus, we 

have got what we were looking for: the wave front in the moving frame at the instant 
of time when the clock in point O shows time t.  

In other words this means that in moving frames, while describing the 
propagation of spherical electromagnetic waves, the units of time and space intervals 
are contracted in 21/1 β−  times and this contraction occurs uniformly in all 
directions, which are radically different from the predictions of the Lorentz 
transformation.  

Now we can write new expressions for the transformation of the fronts of 
spherical electromagnetic waves. If the origin of the moving frame is in point O1, 
then: 

21 β

β

−

−
=′ ctxx , 

21 β−
=′ yy , 

21 β−
=′ zz , 0==′ tt ; 

t’ and t are time coordinates of the points of the wave front. 
If we assume that the origin of the moving frame is in point O’, then: 

21
1 β−

=′ xx , 
21 β−

=′ yy , 
21 β−

=′ zz , 0==′ tt ;  (8) 

 We have to add here the following relations as well: 
21

1
β−= OO tt , 

21 β−
=′

o
O

tt ,              (9) 

were Ot , 
1Ot and Ot ′  are the readings of the clocks in points O, O1 and O’ (the centres 

of the spheres in Fig. 1) respectively.  
Equations (8) and (9) are the counterparts of equations (1) for spherical 

electromagnetic wave.  
 
In the case of a plane wave: 

( ) AOct
n

FO
nn ′=

−

−
=

′
= 120

1
00

1

cos1

β

θβλθ . 
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 To find the location of point A’, let us notice that in direction X (the direction 
of movement of the frame) it is impossible to make distinction between the spherical 
and plane waves. Thus, X components of those waves must be the same in any frame, 
i.e. x coordinate of point A’ must be the same as that of point A2. So point A’ lies on 

the segment GA2  (figure 1); then AFGA =′  and, from 1OOA ′∆ , 
θβ
βθ

ϕ
cos1
1sin

sin
2

−
−

= , 

where GOA 1′∠=ϕ  ( ( )θϕ −  is the angle of aberration for plane electromagnetic 
waves), as follows from the Lorentz transformation. 

In the case of spherical waves angles ϕ  and α  coincide. Thus, according to 
new transformation law the slope of the above-mentioned tube is the same in the 
stationary and moving frames and the angle of aberration is ( )θα − . The relation 
between those angles is given by (5). 

In figure 1 we can see that using plane wave approximation instead of 
spherical wave approximation for electromagnetic waves, we are substituting point A 
by point K. That is the size of the error we make using the Lorentz transformation. 

 
 
Let three clocks – clock 1, clock 2, and clock 3 – be placed in O, O’ and A 

points respectively. At the beginning, when all of them show zero time they coincide 
in point O of the stationary frame. Clocks 2 and 3 are moving relative stationary clock 
1 with velocities cv 11 β=  and cv β=  respectively, θ is the angle between those 
velocities.  

Fig. 3 represents the picture after some time t1 by the stationary clock 1. 

11ctOO β=′ and 1ctOA β= ; clock 2 shows 2
112 1 β−= tt and clock 3 – 

2
13 1 β−= tt .  

In the rest frame of clock 2, when clock 3 shows 2
13 1 β−= tt , clock 2 must 

show  

2
2

2

12
1

1

β

β

−

−
=′ tt ,                              (10) 

 

because, as we have seen, it is necessary that ( ) 2
3

2
22

2
2 ttt +′=′ β . 

In this frame the distance between clocks 2 and 3 is not AO′ , but AO1′ , where 

′=
−

′
= 222

1

'
1

1
tc

AO
AO β

β
.           (11) 

That is because in the rest frame of clock 2 the unit of length is 2
11/1 β−  

times shorter than in the rest frame of clock 1, and any distance, in particular the 
distance between clocks 2 and 3, must be the same times larger.  
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Figure 3. An illustration of the law of addition of velocities. 
 
 
In Fig. 3  

( ) 2
1

2
1

2
1

22 cos2 tcAO θββββ −+=′ .                   (12) 
 

From (10), (11) and (12): 

2
1

2
1

1
2

1
2

2
2

cos21
cos2

ββθββ

θββββ
β

+−

−+
= . 

 
 
 
Let in Fig. 1 a Michelson-Morley device is oriented in direction α relative to 

axis X along which the earth is moving. The length of each arm of the device (a one-
way distance covered by the light in each direction in the rest frame of the devise) is 
R. From the point of view of a stationary frame in which the device (together with the 
earth) is moving with velocity β along the axis X one arm of the device is O1A and the 
other - O1B. In “natural” units those arms (O1A1 and O1B1 respectively) are equal and 
the light emitted from point O at 0=′= tt  arrives at both ends of the device 
simultaneously not only in the stationary, but also in the moving frame, after the 
periods of time τ=t  and 21 βτ −=′t  respectively.  Thus, in the Michelson-Morley 
experiment not only the total times of the round trips of light impulses in opposite 
directions are equal in any frame, but also the times of the one-way back and forth 
travels of those impulses.   

O1’ 
O O’ 

A 

 

θ 
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Now let us have a brief overview. 
 The use of the Lorentz transformation, which assumes the planar character of 

electromagnetic waves, in the cases of the fronts of spherical electromagnetic waves, 
as it was to be expected, leads to a distorted picture of physical reality.  

The new transformation developed in this paper maintains spherical form of 
electromagnetic waves in all inertial frames. According to this transformation, 
contrary to the predictions of the Lorentz transformation, the units of time and space 
intervals in moving frames are contracted in 21/1 β−  times and this contraction 
occurs uniformly in all directions. It seems evident that such transformation won’t 
have any effect on the mathematical expressions of physical laws.  

The expressions of Doppler effect and aberration for spherical electromagnetic 
waves derived here differ from the similar expressions for planar electromagnetic 
waves and those differences persist up to infinity. 

Proceeding from the fact of constancy of light velocity in emptiness and 
isotropy of space, we have to assume that the units of length undergo the same kind of 
changes as the lengths of electromagnetic waves, and “natural” units of length are to 
be introduced. “Natural” units coincide with “mathematical” ones when the distances 
between two stationary points or between a stationary point and the wave front are 
measured. Using “natural” units we get that the times of back and forth travels of an 
electromagnetic impulse during its round trip must be equal in any frame. 

In order to avoid logical difficulties it is necessary to assign to the points of the 
front of an electromagnetic wave, emitted from the origin of a frame at t=0, zero time 
coordinates; otherwise the arrival of an electromagnetic impulse at some point of a 
stationary frame at some instant of time in that point, which must be an invariant, will 
occur at different times in different frames (this simple fact has been strangely 
overlooked by the physicists for so many years).   

In order to maintain the correct balance of the numbers of emitted 
electromagnetic waves the “real” distances covered by moving points are to be 
introduced. A “real” distance between a stationary and a moving point contains the 
number of waves which is equal to the difference in the numbers of waves contained 
between the front of the wave and the stationary and moving points respectively. In 
other words, the difference between the readings of the synchronized stationary and 
moving clocks is equal to the time necessary for the light for covering the “real” 
distance between those clocks. 

A correction to the expression of the law of addition of velocities is made. 
It is encouraging that the new approach is much simpler and seems to be a 

better approximation to the reality. A thorough experimental check-up of all 
theoretical results of the relativistic theory is absolutely necessary.  
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