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Abstract

The large N → ∞ limit of the Exceptional F4, E6 Jordan Matrix
Models of Smolin-Ohwashi leads to a novel Chern-Simons Membrane La-
grangian which is the suitable candidate Lagrangian for non-perturbative
bosonic M Theory in D = 27 real/complex dimensions, respectively, and
whose degrees of freedom encode the global dynamics of membranes begin-
ning/ending on D16 branes. We rely on the seminal work of foliations
by Zois who has studied the dynamics of multiple ”parallel” D-branes
as leaves of foliations of the underlying bulk space time with the pur-
pose of understanding the Non-commutative topology of M theory. The
presence of Octonions will lead naturally to a Non-commutative and Non-
associative topology . Bosonic F theory Lagrangians involve the Chern-
Simons-Zaikov 7-branes construction and which are based on the 56,112
dim Freudenthal algebras Fr[O], F r[C × O]. The latter 7-branes actions
construction requires the definition of triple Freudenthal products in or-
der to build the appropriate quartic E7, E8 invariants, instead of the cubic
F4, E6 invariants of Smolin-Ohwashi that are related to bosonic M theory.
We conclude with a discussion of future avenues of research.

Keywords: Jordan and Division Algebras, Chern-Simons, Exceptional Groups,
Strings, Branes, Matrix Models.

1 Introduction : Chern-Simons Branes and the
large N limit

In this section we will discuss the interplay between Chern Simons branes [1]
and Chern Simons Topological Matrix models [19] in the large N limit. Such
topological Chern Simons brane actions have very interesting properties and
were constructed by Zaikov [1]. Let us start, for example, with the action for
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a spacetime-filling p-brane, whose world-volume p+ 1 = D saturates the target
spacetime dimensions:

S = T

∫
[dp+1σ] ∂σ1Xµ1 ∧ ....... ∧ ∂σp+1XµD . (1.1)

where T is the p-brane (extendon) tension.
Zaikov noticed that in some instances the world-volume of a boundary may

coincide with the boundary of a world-volume. For example, if one has a p′-brane
whose p′+1-dim world-volume can be identified with the natural boundary of an
open-domain associated with a D-dim bulk-region, given by the world-volume
of a spacetime filling p-brane ( p+ 1 = D ), then an integration (Gauss law) of
(1-1) yields :

SCS = T

∫
∂V

[dD−1Σ] Xµ1 ∧ ∂σ2Xµ2 ∧ ....... ∧ ∂σDXµD . (1.2)

and one then recovers the Zaikov action for the Chern-Simons p′ brane whose
p′ + 1-dimensional world-volume spans over the D − 1-dim boundary ∂V of
the D-dim domain V associated with the world-volume of the spacetime-filling
open p-brane. The value of p′ must be such that p′ + 1 = p = D − 1 . Zaikov
concluded that these topological Chern Simons p′-branes exit only in target
spacetimes of dimensionality D = p′ + 2, they are codimension two objects (
like knots ). To ensure translational invariance of CS branes, the variables Xµ

must be understood as those variables defined relative to an origin Xµ−Xµ(0).
What perhaps is the most significant and salient feature of Chern-Simons

p′-branes which live in the p′ + 1-dim boundary of a D-dim bulk region, such
that p′+1 = D− 1, is the fact that they admit an infinite number of secondary
constraints which form an infinite dimensional closed algebra with respect to
the Poisson bracket [1] . Such algebra contains precisely the clasical w1+∞ as
a subalgebras. The latter algebra corresponds to the area-preserving diffeomor-
phisms of a cylinder.; the w∞ algebra corresponds to the area-preserving diffs
of a plane; while the su(∞) is the area-preserving diffs of a sphere [2], [5]

In particular, when the dimensionality of the target spacetime is saturated,
D = p + 1, one can construct, in addition, self-dual p-brane (extendon) so-
lutions obeying the equations of motion and constraints (resulting from p + 1
reparametrization invariance of the world-volume) that are directly related to
these topological Chern-Simons p′-branes. This holds provided p′ + 1 = p and
the embedding manifold is Euclidean . Furthermore, when D = p + 1 = 2n
= even, one has conformal invariance as well. It is in this fashion how the
relationship between the self dual p-branes and Chern Simons p′ = p− 1 branes
emerges. This is roughly the analogy with Witten’s discovery of the one-to-one
relationship between 3D Nonabelian Chern-Simons theories and 2D rational
CFT, [65]

Chern-Simons p′-branes have codimension two and for this reason they are
the higher-dimensional extensions of Knots ( embeddings of loops S1 into three-
dimensions ). Because Chern-Simons branes have codimension 2 , one can have
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two different CS branes living in two complementary dimensions , d1, d2, such
that (p1 + 2) + (p2 + 2) = p1 + p2 + 4 = d1 + d2 = D . The latter relation is
exactly the same one between a p1-brane and its EM dual p2-brane living in
D dimensions. In this sense, these two CS branes ( high dim knots ) intersect
transversely from the D = d1 + d2 perspective and can be seen as EM duals of
each-other.

Since Zaikov’s Chern-Simons branes are high-dimensional Knots , its re-
lation to algebraic K, L theory has to be explored deeper. Zaikov has also
pointed out that in the D = ∞ limit, Chern-Simons p-branes acquire true local
dynamics ! Infinite dimensions based on a hierarchy of infinitely nested spaces
of increasing dimensions, ” Russian Doll”, will give us a unique vantage point
in the sense that one master gauge field in infinite dimensions enocodes the
dynmics of all the infinite number of massless fields in lower dimensions.

Having discussed CS branes we turn our attention to those topological matrix
models which are intricately related to CS branes. Matrix Chern-Simons models
in odd dimensions, D = n = odd, are defined by the Lagrangians consisting of
n Hermitian N ×N matrices Xµ [19] :

L = εµ1µ2....µn
Trace [Xµ1Xµ2 ....Xµn ]. (1.3)

where Xµ is a N ×N matrix
Due to the cyclic property of the trace, one can permute the Xµ1 matrix-

factor inside the trace past all the other matrix-factors until it is placed at the
end of the sequence without changing the value of the trace. A subsequent
permutation of µ1index of the epsilon factor past all the other indices, until it
reaches the end of the sequence, it brings an overall factor of (−1)n−1 , leaving
the relation : L = (−1)n−1L = (−1)D−1L. Thus in order to have a non-
vanishing action (1-3), we require to have (−1)D−1 = 1, which implies that that
D = n must be odd or else the action is trivially zero, L = −L⇒ L = 0 . Since
D is odd, and CS branes require co-dimension two-embeddings, this means that
p′ = D − 2 is odd. Hence the p′ + 1-dim worldvolume of the corresponding CS
brane is even.

To show how the large N limit of Topological Chern-Simons Matrix mod-
els [19] are related to Chern-Simons branes [78] it is essential to explain the
derivation of how Hadronic Bags ( branes ) and Chern-Simons Branes can be
obtained from the Large N limit of Yang-Mills and Generalized Yang-Mills the-
ories in Flat Backgrounds. A Moyal deformation quantization was instrumental
in the construction of p-brane actions and Chern-Simons branes from the large
N limit of SU(N) YM in flat backgrounds. SU(N) reduced-quenched gauge
theories have been shown by us to be related to Hadronic Bags and Chern
Simons Membranes in the large N limit [8] .

This is reminiscent of the chiral model approaches to Self Dual Gravity based
on Self Dual Yang Mills theories [29] . A Moyal deformation quantization of the
Nahm equations associated with a SU(2) YM theory yields the classical N →
∞ limit of the SU(N) YM Nahm equations directly, without ever having to use
∞×∞matrices in the largeN matrix models. By simply taking the classical h̄ =

3



0 limit of the Moyal brackets, the ordinary Poisson bracket algebra associated
with area-preserving diffs algebra SU(∞) [2] is automatically recovered.

This Moyal deformation approach also furnishes dynamical membranes as
well [8] when one uses the spatial quenching approximation to a line ( one di-
mension ) , instead of quenching to a point. In this fashion we constructed
what is called a QCD membrane. Basically, a Moyal quantization takes the
operator Âµ(xµ) into Aµ(xµ; q, p) and commutators into Moyal brackets. A di-
mensional reduction to one temporal dimension ( quenching to a line ) brings
us to functions of the form Aµ(t, q, p), which precisely corresponds to the mem-
brane coordinates Xµ(t, σ1, σ2) after identifying the σa variables with q, p. The
h̄ = 0 limit turns the Moyal bracket into a Poisson one. Upon the identification
of h̄ = 2π/N , the classical h̄ = 0 limit is tantamount to the N = ∞ limit and it
is in this fashion how the large N SU(N) matrix model bears a direct relation to
the physics of membranes. The Moyal quantization explains this in a straight-
forward fashion without having to use ∞×∞ matrices ! The large N limit of
Nonabelian SU(N) Born-Infeld models and its relation to Nambu-Goto-Dirac
string actions was also achieved in [8].

We will briefly review [8] how a 4D Yang-Mills theory reduced and quenched
to a point, and supplemented by a topological theta term can be related through
a Weyl-Wigner Groenowold Moyal ( WWGM) quantization procedure to an
open domain of the 3-dim diskD3. The bulkD3×R1 is the interior of a hadronic
bag and the (lateral ) boundary is the Chern-Simons world volume S2 × R1 of
a membrane of topology S2 ( a codimension two object ). Hence, we have an
example where the world-volume of a boundary S2×R1 is the lateral-boundary
of the world-volume of an open 3-brane of topology D3 : ∂(D3×R1) = S2×R1

(setting asside the points at infinity). The boundary dynamics is not trivial
despite the fact that there are no transverse bulk dynamics associated with the
interior of the bag. This is due to the fact that the 3-brane is spacetime filling
: 3 + 1 = 4 and therefore has no transverse physical degrees of freedom.

The reduced-quenched action to a point in D = 4 is:

S = −1
4
(
2π
a

)4
N

g2
Y M

Tr(FµνF
µν).

Fµν = [iDµ, iDν ]. (1.4)

Notice that the reduced-quenched action is defined at a ” point ” xo . The
quenched approximation is based essentially by replacing the field strengths by
their commutator dropping the ordinary derivative terms . For simplicity we
have omitted the matrix SU(N) indices in (1-4). The theta term is:

Sθ = −θNg
2
Y M

16π2
(
2π
a

)4εµνρσTr(FµνFρσ). (1.5)

The WWGM quantization establishes a one-to-one correspondence between
a linear operatorDµ = ∂µ+Aµ acting on the Hilbert spaceH of square integrable
functions in RD and a smooth function Aµ(x, y) which is the Fourier transform
of Aµ(q, p). The latter quantity is obtained by evaluating the trace of the
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Dµ = ∂µ +Aµ operator summing over the diagonal elements with respect to an
orthonormal basis in the Hilbert space. Under the WWGM correspondence ,
in the quenched-reduced approximation, the matrix product Aµ.Aν is mapped
into the noncommutative Moyal star product of their symbols Aµ ∗Aν and the
commutators are mapped into their Moyal brackets:

1
ih̄

[Aµ, Aν ] ⇒ 1
ih̄
{Aµ,Aν}MB → {Aµ,Aν}PB when h̄→ 0. (1.6)

Replacing the Trace operation with an integration w.r.t the internal phase
space variables , σ ≡ qi, pi gives:

(2π)4

N4
Trace→

∫
d4σ. (1.7)

The WWGM deformation quantization of the quenched-reduced orginal ac-
tions is:

S∗ = −1
4
(
2π
a

)4
N

g2
Y M

∫
d4σFµν(σ) ∗ Fµν(σ).

Fµν = {iAµ, iAν}. (1.8)

And the corresponding WWGM deformation of the theta term:

S∗θ = −θNg
2
Y M

16π2
(
2π
a

)4εµνρσ

∫
d4σFµν(σ) ∗ Fρσ(σ). (1.9)

By performing the following gauge fields/coordinate correspondence:

Aµ(σ) → (
2π
N

)1/4Xµ(σ)

Fµν(σ) → (
2π
N

)1/2{Xµ(σ), Xν(σ)}. (1.10)

And, finally, by setting the Moyal deformation parameter ”h̄” = 2π/N of the
WWGM deformed action , to zero ; i.e by taking the classical h̄ = 0 limit, which
is tantamount to taking theN = ∞ limit, one can see that the quenched-reduced
YM action in the large N limit will become the Dolan-Tchrakian action for a
3-brane, in the conformal gauge [27], moving in a flat D = 4-dim background
[8]:

S = − 1
4g2

Y M

(
2π
a

)4
∫
d4σ{Xµ, Xν}PB{Xρ, Xτ}PB ηµρηντ . (1.11)

due to the fact that the 1
h̄ times the Moyal brackets collapse to the ordinary

Poisson brackets in the h̄ = 2π/N = 0 limit ( large N limit ).
Whereas the action corresponding to the theta term will become in the

N = ∞ limit, the Chern-Simons Zaikov action for a closed membrane embed-
ded in a four-dimensional ( pseudo ) Euclidean background and whose 3-dim
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worldvolume is the boundary of the four-dim hadronic bag . The Chern-Simons
membrane has nontrivial boundary dynamics compared with the trivial bulk
dynamics of the spacetime filling 3-brane. This introductory review is essen-
tial to understand how to related the large N limit of the Exceptional Matrix
Models [39], [38] to a novel version of Chern-Simons branes .

2 The large N limit of Exceptional Jordan Ma-
trix Models

2.1 Exceptional Chern-Simons Branes

Ohwashi [38] defined his E6 Matrix model by starting with the Matrix MA

elements of the algebra J × G AA
1 ΦA

3 Φ̄A
2

Φ̄A
3 AA

2 ΦA
1

ΦA
2 Φ̄A

1 AA
3


where J is the complexified Jordan algebra of degree three J3[C ×O] and G is
the u(N) Lie algebra corresponding to the U(N) group with structure constants
fABC . [TA, TB ] = fABCTC . AI , (I = 1, 2, 3) are complex-valued numbers and
ΦI are elements of the complex Graves-Cayley octonion algebra comprised of
complex octonions (xo+iyo)eo+(xi+iyi)ei; i = 1, 2, 3, ...., 7. The bar operation
Φ̄ denotes the octonionic-conjugation (xo + iyo)eo − (xi + iyi)ei that must not
be confused with complex conjugation (xo− iyo)eo + (xi− iyi)ei. The action of
Ohwashi was based on the cubic form

S = ( ρ2(M[A), ρ(MB), MC] ) fABC (X,Y, Z) = tr ( X · (Y ×F Z) ) (2.1)

ρ, ρ3 = 1 is the cycle mapping (based on the triality symmetry of SO(8)) that
takes the index I → I + 1, modulo 3. It is essential to introduce the cycle
mapping in (2.1) otherwise the expression would have been identically equal to
zero due to the fact that the cubic form is symmetric in its three entries while
fABC is antisymmetric . The product Y ×F Z is the symmetric Freudenthal
product

Y ×F Z = Y ·Z− 1
2
tr (Y ) Z− 1

2
tr (Z) Y +

1
2
tr (Y ) tr (Z) − 1

2
tr (Y ·Z) 1. (2.2)

and X · Y is the commutative but non-associative Jordan product given by
the anti-commutator 1

2 (XY + Y X) obeying the Jordan identity (X · Y ) ·X2 =
X · (Y · X2). The cubic form (2.1) is very different from the trilinear form
tr (X · (Y ·Z)) used by Smolin [39] to construct the F4 matrix model based on
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J3[O] rather than J3[C × O]. The action of Ohwashi is complex-valued while
that of Smolin is real-valued. The explicit evaluation of the expression (2.1) can
be found in [38] where he includes a detailed appendix with numerous important
formulae that are indispensable to be able to write down all the explicit terms
of the cubic form.

We shall prove now why the N → ∞ limit of Ohwashi E6 matrix model is
given by the novel Chern-Simons membrane model ( not to be confused with
the Zaikov’s Chern-Simons membrane [1] of the previous section ) :

S =
∫

V

[d3V ] εabc ( ∂aJ, ∂b ρ(J), ∂c ρ
2(J) ). (2.3)

The action, omitting numerical factors, is explicitly given by

S =
∫

V

d3V εabc [ εIJK( ∂aAI ∂bAJ ∂cAK + ηij ∂aΦ0I ∂bΦiJ ∂cΦjK +

σijk ∂aΦiI ∂bΦjJ ∂cΦkK + ηij ∂aAI ∂bΦiJ ∂cΦjK + ∂aAI ∂bΦ0J ∂cΦ0K +

∂aΦ0I ∂bΦ0J ∂cΦ0K ) + σijk
I=3∑
I=1

∂aΦiI ∂bΦjI ∂cΦkI ] (2.4)

The above action can be recast in terms of Nambu-Poisson brackets as∫
d3σ [ εIJK( { AI , AJ , AK } + ηij { Φ0I , ΦiJ , ΦjK } +

σijk { ΦiI , ΦjJ , ΦkK } + ηij { AI , ΦiJ , ΦjK } + { AI , Φ0J , Φ0K } +

{ Φ0I , Φ0J , Φ0K } ) + σijk
I=3∑
I=1

{ ΦiI , ΦjI , ΦkI} ]. (2.5)

The integrand is a total derivative that can be integrated over a two-dim
boundary domain Σ ≡ ∂V giving

S =
∫

∂V

[d2Σ]a εabc [ εIJK( AI ∂bAJ ∂cAK + ηij Φ0I ∂bΦiJ ∂cΦjK +

σijk ΦiI ∂bΦjJ ∂cΦkK + ηij AI ∂bΦiJ ∂cΦjK +AI ∂bΦ0J ∂cΦ0K +

Φ0I ∂bΦ0J ∂cΦ0K ) + σijk
I=3∑
I=1

ΦiI ∂bΦjI ∂cΦkI ]. (2.6)

The novel Chern-Simons action (2.6) is the candidate action for non-perturbative
bosonic M theory Lagrangian in D = 27 dim.

We will see now how that the large N limit of the E6 Exceptional Matrix
Model action described in [38] is given by the action (2-6) . To achieve this
one needs to follow similar steps as those taken in the previous section to relate
the large N limit of quenched-reduced SU(N) Yang-Mills actions to strings,
membranes and 3-branes (bags ) actions [8]. Upon doing so one arrives at the
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following correspondence among the Matrix Model action [38] with our Chern-
Simons action (2.6)

limN→∞ εIJK trN×N ( AA
I TA [AB

J TB , AC
KTC ] ) →∫

[d2Σ]a εabcAI (∂bAJ) (∂cAK) εIJK . (2.7)

where the N2 matrices TA, TB , TC ... are N × N Hermitian matrices associ-
ated with the Lie algebra u(N) generators corresponding to the group U(N) =
SU(N) × U(1). The U(1) piece corresponds to the center of mass mode since
the variables in the Chern-Simons brane actions must be understood in terms of
X−X(0); i.e. relative to an origin in order to preserve translational invariance.
The indices I, J,K run over 1, 2, 3. The indices a, b.c run over 1, 2, 3, the three
degrees of freedom of the world-volume of a membrane. The surface boundary
element of the 3 dim world-volume V is d2~S = d2Σan

a where na is a unit vector
pointing in the outwards normal direction.

The remaining terms in the E6 Exceptional Matrix Model/Chern-Simons
branes correspondence (in the large N limit ) goes as follows :

limN→∞ εIJK trN×N ( ηij ΦA
iITA [AB

J TB , ΦC
jKTC ] ) →∫

[d2Σ]a εabc ηij ΦiI (∂bAJ) (∂cΦjK) εIJK . (2.8)

limN→∞ εIJK trN×N ( σijk ΦA
iITA [ΦB

jJTB , ΦC
kKTC ] ) →∫

[d2Σ]a εabc σijk ΦiI (∂bΦjJ) (∂cΦkK) εIJK . (2.9)

etc..................
In this way we can show that the large N limit of the E6 Exceptional Matrix

Model [38] is given by a Chern-Simons brane action (2.6) . The crux of this
large N → ∞ limit correspondence relies on the fact that N × N matrices
A → A(σ1, σ2, σ3) become the membrane coordinates in the continuum limit;
the traceN×N →

∫
; commutators → brackets and the Jordan algebra non-

associator [X,Y, Z] = X · (Y · Z) − (X · Y ) · Z has a correspondence with the
Nambu-Poisson brackets {X(σa), Y (σa), Z(σa)} as discussed by [56]. Similar
results can be obtained in the large N limit of the F4 Matrix Models of [39],
with the only difference that one must use the trilinear form based on Jordan
products instead of the cubic form ( based on the Jordan and Freudenthal
product ).

The action in the form (2-5) is clearly invariant under volume-preserving
reparametrizations of the three-dim world-volume that leave invariant the Nambu-
Poisson brackets. One may view the membrane as an incompressible fluid that
can change its shape while maintaining its volume. The true dynamics of (2-5)
reside in the two-dim boundary captured by the two-dim boundary action S(Σ)
(2.6).
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There is invariance under the global rigid E6 (simply connected compact
group) mappings which are encoded as automorphims of the J3[C ×O] algebra
under the transformations J→ α J, where α is a 3×3 matrix whose entries are
numerical constants, and which leave invariant the cubic form

S(αJ) =
∫

V

[d3V ] εabc ( ∂a (αJ), ∂b (αρ(J)), ∂c (αρ2(J)) ) =

S(J) =
∫

V

[d3V ] εabc ( ∂a J, ∂b ρ(J), ∂c ρ
2(J) ). (2.10)

these E6 global (rigid) mappings α also leave invariant the Hermitian product

< αX, αY >=< X,Y >= (X∗,Y) = tr (X∗ · Y). (2.11)

There is also symmetry under the cycle mapping ρ by construction. See [38] for
futher details.

2.2 Chern-Simons Foliations and M Theory

Next we will show that our Chern-Simons Brane Lagrangian is a suitable candi-
date for the bosonic M Theory Lagrangians in D = 27 real and complex dimen-
sions ( 54 real dim ), respectively, whose degrees of freedom encode the global
dynamics of membranes beginning/ending on D16 branes. We will rely on the
seminal work of foliations by Zois [67] who has studied the dynamics of multiple
”parallel” D-branes from the perspective of leaves of foliations of the under-
lying bulk spacetime with the purpose of understanding the Non-commutative
topology of M theory. The presence of Octonions will lead naturally to a Non-
commutative and Non-associative topology .

One may interpret the 27 functions AI(σa),Φ0I(σa),ΦiI(σ) associated with
the Chern-Simons action (2-5, 2-6) as Foliations-mapsX from the 3-dim world-
volume of the membrane (and its boundary ) to the target space M27. This, of
course, requires to show that these foliations-maps indeed correspond to a cer-
tain class of solutions to the equations of motion associated with the boundary
dynamics of the Chern-Simons action. Let us assume there are such foliations-
maps that solve the equations of motion. Upon foliating the 3-dim world-volume
V into Σ × R, where the leaves Σ are two-dim Riemann surfaces, and R is a
world-volume clock, yields the maps :

X : Σ×R → Υ16 ×M11. (2.12)

where the ”horizontal” leaves Υ16 foliate the underlying space M27 along the
”vertical” directions M11 . Let us study now the Membranes ending on D-
branes scenario [68]. Given a finite size tubular region V with two boundary-
components ∂V = Σ1 ∪ Σ2 one may interpret the first and last leaves of the
foliations of M27 as two D16 branes at the ”end of the world scenario” [66]

X : Vbulk → M27. X : ∂V = Σ1 ∪ Σ2 → ∂M27 = D16 ∪D16. (2.13)
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The foliation into a continuum of multi ”parallel” D16-branes [67] ( what the
N → ∞ continuum limit truly represents ) will break the SO(26, 1) symme-
try of the bulk Minkowski spacetime M27, leaving the symmetry group of
SO(10, 1) × isometries (Υ16) unbroken. In the case of bosonic F theory one
has a 28 dim bulk spacetime, instead.

When the coordinates X belong to the J3[O] algebra, the foliations of M27

into Υ16 ×M11 are the maps

X(σ1, σ2, σ3) : Vbulk → M11 ×Υ16. (2.14)

and the boundary maps obey

X(∂V ) : ∂V = Σ1 ∪ Σ2 → (R×O)P 2 ∪ (R×O)P 2. (2.15)

with
(R×O)P 2 ≡ F4

Spin(9)
. (2.16)

Since ∂V is made out of compact regions ( Riemann surfaces ) Σ1,Σ2 the con-
tinous maps X(∂V ) should map compact sets into compact sets that is indeed
consistent by viewing the projective planes as compact domains of the D16
branes ( noncompact hypersurfaces in general) .

Because the isometries of (R×O)P 2 = Automorphism group of the Jordan
algebra J3[O] = F4, this picture of foliations is consistent at the boundaries since
F4 acts naturally on (R×O)P 2. The split of 27 = 3+8+16 can be understood
as follows : The three functions A1(σa),A2(σa),A3(σa) in (2-4, 2-5, 2-6 ) are
associated with the three longitudinal directions corresponding to the 2+1 = 3
dim world-volume of the membrane. The 8 functions Φ01,Φi1 ( i = 1, 2, 3, ....7
) represent the 8 transverse-directions of the membrane with respect to an 11-
dim domain region inside the 27-dim bulk of M27. The 16 ( real ) functions
Φ02,Φi2,Φ03,Φi3 correspond to the coordinates of the 16 real-dim (R × O)P 2

projective plane.
A word of caution is warranted at this point. Our interpretation of the

variables in J3[O] differs from the D = 10 strings picture of [45] where they
view the variables of the Jordan algebra J3[O] ≡ R ⊕ J2[O] ⊕ O2 as follows :
they treat the variable A3 as scalar (like a dilaton) ; the variables A1,A2 are
seen as the two light-cone directions in D = 10 ; the variables Φ01,Φi1 are 8
transverse directions ( vectors ) ; and the 8 + 8 = 16 variables Φ02,Φi2,Φ03,Φi3

are two D = 10 Majorana-Weyl commuting spinors. The F4 invariant cubic
norm in D = 10 is defined as

N(J) = aA3X
µXνηµν + bXµψ̄γµψ. a2 = 2. b = 1. (2.17)

Exceptional strings based on Jordan algebras have also been studied by several
authors [46] and the interpretation of the dimensions D = 26, 27, 28 in terms of
the traceless J3[O] ( 26-dim algebra ) , ordinary J3[O] ( 27-dim algebra ) and
J4[H] ( 28-dim algebra ) Jordan algebras have been provided by [53].

However, in our work, we pose a different interpretation of the coordinate
variables X of J3[O], such that the large N limit of Smolin’s F4 matrix model

10



[39] describes the global dynamics of a 3 real-dim world-volume of the membrane
whose 2 real-dim boundary-regions Σ = ∂V ( ”endpoints” ) are situated on the
D16 branes ( (R×O)P 2 planes of 16 real dimensions ) embedded in a D = 27
real-dim bulk spacetime.

When the variables X belong to the complexified Jordan algebra J3[C×O] ,
the large N limit of Ohwashi’s E6 matrix model [38], given by our Chern-Simons
action (2.6), describes the global dynamics of a 3 complex-dim world-volume of
the membrane whose 2 complex-dim boundary-regions Σ = ∂V ( ”endpoints”
) are situated on the (C × O)P 2 planes; i.e. we have complexified-membranes
beginining/ending on the complexified D16-branes (of real dimensions 2× 16 =
32) embedded in a D = 27 complex-dim bulk spacetime. The Automorphism
group of J3[C × O] coincides with the isometry group of (C × O)P 2 given by
E6. This projective plane can be described as the coset

(C ×O)P 2 ≡ E6

(Spin(10)× U(1))/Z4
. (2.18)

To finalize this section we should add the importance of having membranes
on curved backgrounds, in particular, on symmetric spaces obtained from the
quotients of the conformal group of the corresponding Jordan algebra by their
maximal compact subgroups [42] . For instance, there is a whole family of sym-
metric spaces associated with the four Jordan magical algebras J3[R,C,H,O]
which appear in compactifications of N = 2 Maxwell-Einstein Supergravities
from 5D to 4D and 3D [42]. The following 2 × 27 = 54 dim symmetric space
(resulting from the compactification from 5D → 4D) E7(−25)/E6 × U(1) is one
of them. Therefore, once can naturally identify the 2 × 27 = 54 real degrees
of freedom of the J3[C × O] algebra in the large N limit of Ohwashi E6 ma-
trix model as the coordinates of the 54-dim (curved) symmetric space where
the complexified-membrane is living. The Chern-Simons action foliations pic-
ture works also in curved spaces. The E6 can be identified now as part of the
maximal compact stability subgroup of the non-compact E7(−25) group.

3 On F theory, 7-branes and Freudenthal Triple
Systems

We begin this last section by replacing the Jordan algebras J3[O], J3[C × O]
with the 56,112 dim Freudenthal algebras Fr[O], F r[C ×O], respectively. We
will see that the complexified F theory in D = 2 × 28 = 56 dim [70] stands
now for Freudenthal ! In the first part of this section we identify the algebras
and their associated spaces while in the second part we construct the 7-brane
actions that would require the triple Freudenthal product in order to construct
a quartic invariant (X,Y, Z,W ) [42] .

When the coordinates J belong to the real Freudenthal algebra :(
a J3[O]

J3[O] b

)
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the two real variables a, b along the diagonal parametrize the two-torus T 2 fibra-
tion over each point of the complexified 11-dim spacetime M11

C . The dimension
of the algebra Fr [O] is 2+2×27 = 2+54 = 2×28 = 56. The complexified M28

C

could be foliated as M11
C ×f T

2×Υ16
C . The Automorphims group of Fr[O] = E6.

The reason we may have a 7-brane whose world-volume is 8-dim can be
seen as follows : The Fr[O] has two copies of J3[O], this entails that we have
6 coordinates AI ,BI , I = 1, 2, 3. There are the additional 2 coordinates a, b
giving a total of 6+2 = 8 coordinates that agree with the number of longitudinal
degrees of freedom associated with the 8 dim world-volume of a 7-brane.

When the coordinates X belong to the complexified Freudenthal algebra :(
a1 + ia2 J3[C ×O]
J3[C ×O] b1 + ib2

)
The four real variables a1, a2, b1, b2 along the diagonal parametrize the four-

torus T 4 fibration over each point of the quaternified 11-dim spacetime M11
H .

The dimension of the algebra Fr [C × O] is 2 × (2 + 54) = 4 × 28 = 112 that
suggests that a quaternionic version of F theory may exist since the M28

H = H28

space may be foliated into M11
H ×f T

4 × Υ16
H . The Automorphism group of

Fr[C ×O] = E7.
In the compactifications of N = 2 Maxwell-Einstein Supergravities from

5D to 3D [42] there is a 4 × 28 = 112 real-dim symmetric space M(J) =
E8(−24)/E7 × SU(2) . Therefore, for this reason, one can naturally identify
the 4 × 28 = 2 × 56 = 112 real degrees of freedom of the Fr [C × O] algebra
as the coordinates of the 112 dim ( curved) symmetric space M(J) where the
7-brane is living. In this case (as we shall see below) one may have an 8 complex-
dim world-volume of the complexified 7-brane living in 56 complex-dim. The E7

automorphism group of the Fr[C×O] algebra (also known as the ternary Brown
algebra [48]) can be identified now as part of the maximal compact subgroup of
the non-compact E8(−24) group.

The complexification of the 112-dim symmetric space E8(−24)/E7×SU(2) (if
this symmetric space admits an integrable complex structure) has 2× 4× 28 =
8×28 = 4×56 = 224 real dim. In this case we may have have an 8 quaternionic-
dim world-volume of the quaternionic 7-brane living in 56 quaternionic-dim (
28 octonionic-dim ) that may correspond to an octonionic version of F theory.
There is a 224 dim space that has been coined as the tesserat [53] and is
related to the 248-dim E8 algebra and the 24-dim Chevalley algebra (224 =
248 − 24). The latter is obtained by deleting the diagonal part of the 3 × 3
matrix elements of the algebra J3[O] and in the Jordan products X •ChY = (X ·
Y )offdiagonal. Therefore, the tesserat construction may provide the algebraic
structures behind a putative octonionic bosonic F theory in 28 octonionic-dim
( 224 real-dim ).

The reason one cannot use h3[H×O] and h3[O×O] entries in the above Zorn
2×2 block matrix descriptions of the Freudenthal algebras is because the former
matrices don′t belong to a Jordan algebra [47] . In order for the matrix algebra
to close one has to add the matrix commutators. All of these structures, whether
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they correspond to Jordan algebras or not, can be embedded in the polyvector-
geometry of C-spaces (an Extended Relativity theory in Clifford-spaces) [76],
[77] because there are octonionic realizations of Clifford algebras in D = 8
despite the fact that octonions are non-associative [52], by introducting left and
right products [52].

Having discusses the algebraic details, we go back to the work of Gunaydin
et al [42] who have constructed the conformal (related to SO(D, 2), ”two times
” ) and quasi-conformal (related to SO(D + 2, 4), ”four times”) realizations of
Exceptional Lie groups based on the 3-grading and 5-grading decompositions of
the noncompact groups E7(7) and E8(8) respectively. The 56 dim representation
of E7(7) admits the 3-grading decomposition under the E6(6) × D(dilations)
subgroup as

1⊕ (2̄7⊕ 27)⊕ 1. (3.6)

The E8(8) admits the 5-grading decomposition under the E7(7)×D subgroup
as :

1⊕ 56⊕ (133⊕ 1)⊕ 56⊕ 1. (3.7)

The physical significance of this ”mirror” symmetry in these graded decomposi-
tions is that one has a phase-space structure of coordinates and momenta with an
underlying conformal (quasi-conformal) structure. In particular, a Dual-Phase
Space Relativity in Clifford spaces has been constructed in [77], implement-
ing the work of Max Born who many years ago suggested that , by duality of
q ↔ p , there should be a maximal bound on the proper four-forces in Na-
ture, acting on a fundamental elementary particle, that one may assume to be
F = mPlanckc

2/LPlanck, in the same vein there is a velocity bound given by the
speed of light.

Gunaydin et al [42] have shown that there are no quadratic E7(7) invariants in
the 56 representation but instead a real quartic invariant I4 can be constructed
by means of the Freudenthal ternary product X × Y × Z → W and a skew-
symmetric bilinear form < X,Y > :

I4 =
1
48

< (X,X,X), X > = XijXjkX
klXli −

1
4
XijXijX

klXkl +

1
96
εijklmnpqXijXklXmnXpq +

1
96
εijklmnpqX

ijXklXmnXpq. (3.8)

where the symplectic invariant of two 56 representations, like the area element
in phase space

∫
dp ∧ dq, is given by :

< X,Y >= XijYij −XijY
ij (3.9)

where the fundamental 56 dimensional representation of E7(7) is spanned by the
anti-symmetric real tensors ( bi-vectors ) Xij , Xij built from SL(8, R) indices
1 ≤ i, j ≤ 8 so that 56 = 28+28 since an SL(8, R) bi-vector has 28 independent
components.
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The next step is to construct E7(7) × U(N) invariants in the large N limit.
This is straightforward once we follow the steps in the previous sections after
defining the matrix coordinates MATA = XijATA which take values in the Lie
algebra e7(7) × u(N). The quartic invariant reads

I4 = ρABCD [ XijAXB
jkX

klCXD
li −

1
4
XijAXB

ijX
klCXD

kl +

1
96
εijklmnpqXA

ijX
B
klX

C
mnX

D
pq +

1
96
εijklmnpqX

ijAXklBXmnCXpqD ]. (3.10)

where ρABCD = fE
[AB fCD]E is fully antisymmetric and is built from the struc-

ture constants fABC of the u(N) algebra.
The large N limit of the expression I4 in (3-10) is not unique [8] and admits

the following actions :
• Maps of bivector-valued world-volumes onto bivector-valued target spaces

Xij(σab), Xij(σab) :

S8 =
∫

[Dσab] [ { Xij , Xjk, X
kl, Xli } −

1
4
{ Xij , Xij , X

kl, Xkl } +

1
96
εijklmnpq { Xij , Xkl, Xmn, Xpq } +

1
96
εijklmnpq { Xij , Xkl, Xmn, Xpq } ]. (3.11a)

where the Nambu-Poisson brackets are defined now with respect to the 28
bivector coordinates σab = −σba associated with the 8 dim world-volume of
the 7-brane

{ Xij , Xjk, X
kl, Xli } =∑

Ωa1b1a2b2a3b3a4b4
∂Xij

∂σa1b1

∂Xjk

∂σa2b2

∂Xkl

∂σa3b3

∂Xli

∂σa4b4
. (3.12a)

since the indices run a, b, c..... = 1, 2, 3...8 there are 28 bivector σab degrees of
freedom. There are 28 bivector coordinates Xij(σab) and 28 bivector ”conju-
gate momenta” coordinates Xij(σab) = Pij(σab) . The total of 28 + 28 = 56
”phase space” coordinates match the dimension of the Fr[O] algebra . The
four-biforms , like dXij ∧ dXkl ∧ dXmn ∧ dXpq, etc.... in (3-11) capture the
embeddings of the 8-dim world-volume of the 7-brane onto the C28 space ( 56
real-dim ) . Bi-forms and multi-forms as generalizations of ordinary forms have
been thoroughly studied in [81].

Ωa1b1a2b2a3b3a4b4 is the bivector-analog of Ωabcd = ωabωcd − ωcbωad which
is defined in terms of the antisymmetric 8 × 8 matrix ωab, derived from the
inverse of the non-degenerate symplectic form ω = ωab dσ

a ∧ dσb. Polyvector-
valued Phase-spaces have been analyzed by [77]. Generalized actions of the
type in ( 3-11) have been constructed in Clifford-spaces ( C-spaces ) based on
polyvector-valued coordinates ( tensorial spaces ) in [76], [77]. A generalized
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supersymmetry in Clifford (polyvector-valued ) superspaces has been advanced
in [77]. Polyvector-valued super-Poincare algebras and their relationship with
M,F theory superlagebras have been studied by [79]. Clifford-space extensions
of the Standard Model ( generalized Yang-Mills theories, tensorial-gauge theo-
ries ) have been presented by [80] where new particles are expected to be found
at the 10 Tev regime.

• Maps from an 8-dim world-volume onto bivector-valued target spaces
Xij(σa), Xij(σa) :

S8 =
∫

[Dσa] [ { Xij , Xjk, X
kl, Xli } −

1
4
{ Xij , Xij , X

kl, Xkl } +

1
96
εijklmnpq { Xij , Xkl, Xmn, Xpq } +

1
96
εijklmnpq { Xij , Xkl, Xmn, Xpq } ]. (3.11b)

where the Nambu-Poisson brackets are defined now with respect to the 8 coor-
dinates σa associated with the 8 dim world-volume of the 7-brane

{ Xij , Xjk, X
kl, Xli } =∑

Ωa1a2a3a4
∂Xij

∂σa1

∂Xjk

∂σa2

∂Xkl

∂σa3

∂Xli

∂σa4
. (3.12b)

therefore, the 8-dim action (3-11b) describes the global dynamics of a 7-brane,
embedded in 28-complex dim ( 56 real dim ) corresponding to a complexified
bosonic F theory. Identical results can be are attained when the coordinates
Xij , Xij belong to the Fr[C × O] algebra of 4 × 28 real-dimensions. In this
case one has the quaternionic version of the bosonic F theory. The connection
between F theory and Jordan algebras of degree four J4[H] have been described
by Smith [53].

• Maps from 8-dim world-volume onto an 8-dim target space Xi(σa)
The action ( 3-11a ) is the bivector partner action of the following 8-dim

action that is associated with an 8-dim non-linear sigma model described by
the maps Xi(σa) from an 8-dim world volume described by the coordinates
σa, a = 1, 2, 3, .....8 to an 8-dim target space background described by the
coordinates Xi, i = 1, 2, 3, ...8 :

S8 =
∫

d8σ [ {Xi, Xj}{Xj , Xk}{Xk, X l}{Xl, Xi} −

1
4
{Xi, Xj}{Xi, Xj}{Xk, X l}{Xk, Xl} +

1
96
εijklmnpq{Xi, Xj}{Xk, Xl}{Xm, Xn}{Xp, Xq} +

1
96
εijklmnpq{Xi, Xj}{Xk, X l}{Xm, Xn}{Xp, Xq} ]. (3.13)
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where {X,Y } are the ordinary Poisson brackets

{X,Y } = ωab ∂aX ∂bY (3.14)

defined in terms of the antisymmetric 8× 8 matrix ωab that is derived from the
inverse of the non-degenerate symplectic form ω = ωab dσ

a ∧ dσb

The last two terms of (3-13) resemble the theta terms in section 1 , but
not the first two terms which require a ”metric” to raise and lower indices. The
latter terms resemble (up to numerical factors) those terms present in the class of
Dolan-Tchrakian [27] conformally invariant p-brane actions (when p+ 1 = 2n=
even) after the conformal gauge has been chosen. The bulk terms of the action
have no local dynamics since there are no transverse degrees of freedom 8−8 = 0.
However, there are still non-trivial boundary dynamics if ∂Ω(8) = Σ(7).

Since the Nambu-Poisson brackets can be written as

{Xi, Xj , Xk, ......., Xq}NPB = {Xi, Xj}{Xk, X l}{Xm, Xn}{Xp, Xq} ±

signed permutations. (3.15)

This fact allows us to integrate the last two terms of the action (3-13) giving
S8 = Sbulk + Sboundary where

S(boundary) ∼∫
[d7Σ]a εijklmnpq εabcdefghXi ∂bXj ∂cXk ∂dXl ∂eXm ∂fXn ∂gXp ∂hXq. (3.16)

The boundary term belongs to the same class of Chern-Simons brane actions
(higher-dimensional ”knots”) described by Zaikov [1]. with an underlying W∞
symmetry structure in the case of a Chern-Simons string whose world volume
is the two-dimensional boundary of a three-dim region.

Concluding, the action (3-11a), which is the bivector partner of the action
(3-13), in conjunction with the ordinary action (3-13) and the F theory action
in eq-(3-11b), can all be embedded into more fundamental and generalized p-
brane actions in Clifford-spaces [76], [77], defined as maps of polyvector-valued
world-volumes onto polyvector-valued target spaces. Namely these actions are
based on Clifford-valued hyper-complex maps and describe the unified dynamics
of many different p-branes of different dimensionalities on equal footing.

Having discussed the action (3-13) and its bivector-partner (3-11a) action,
and the bosonic (complexified ) F theory action (3-11b), we finalize this sec-
tion by explaining how one could built generalized exceptional non-linear sigma
models on curved backgrounds. Gunaydin et al [42] proceeded to built a quasi-
conformal nonlinear realization of E8(8) based on the 5-grading decomposition
w.r.t the subgroup E8(8) ×D. Namely, one may exhibit a nonlinear realization
of E8(8) on the 1 + 56 = 57-dim real vector space with coordinates living in the
Fr[O] ⊕ R algebra and given by X = (Xij , Xij , x). The X forms the 56 ⊕ 1
representation of E7(7). It can be shown that there is a quartic invariant ( a
”light-cone” in 57 dim ) under the action of the E8(8) group given by :
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N4 = I4(Xij , Xij) − x2. (3.17)

The displacement in the 57-dim generalized spacetime is defined by the co-
ordinates :

δ(X,Y ) = (Xij − Y ij , Xij − Yij , x− y + < X,Y > ) = (Zij , Zij , z) (3.18)

the ”light-cone” in 57-dim invariant under E8(8) is defined by

N4 [δ(X,Y )] = I4(Zij , Zij) − z2 = 0. (3.19)

This geometrical expression is remarkable similar to the light-cone in Clifford-
spaces ! [76], [77].

The construction of a quartic E8(8)-invariant in D = 57 dim, allows also
to built generalized non-linear sigma models [27], [25] on curved 56-dim back-
grounds defined by the constraint in a 57-dim space

N4 [δ(X,Y )] = I4(Zij , Zij) − z2 = R2. (3.20)

this constraint is just the analog of the definition of hyperboloids Hn as noncom-
pact hypersurfaces embedded in flat Rn+1 pseudo-Ecuclidean spaces; like de Sit-
ter and Anti de Sitter spaces dSn, AdSn. The poly-disc Dn = SO(n, 2)/SO(n)×
SO(2) with n complex-dim (2n real dimensions ) is the curved phase space cor-
responding to the dynamics of particles moving in AdSn. The Shilov-boundary
of the poly-disc is n real-dim and has the same topology as the compactified
Minkowski spacetime Sn−1 ×RP 1. The Geometry and Topology of these sym-
metric spaces (and their Shilov boundaries) has been instrumental in the deriva-
tion of the observed values of the coupling constants of the Electromagnetic,
Weak, Strong and Gravitational forces, measured at four very specific scales
corresponding to the Bohr radius, the Z boson mass, the pion π mass and the
Planck mass, respectively [53], [20].

To finalize this section, we should add that a 7-graded decomposition of the
E8 algebra has been provided by Larsson that reflects the underlying Clifford
algebraic structures of Cl(8), Cl(6) behind E8 [53] and which will permit us
to embed all of these models discussed in this work within the C-space-branes
construction of [76].

4 Concluding Remarks : Future Projects

The seminal work by [54] on representation theory and the Exceptional Projec-
tive Geometry of points, lines, planes and symplecta; the Magic-square con-
struction of Freudenthal-Tits [58]; the triality and 4-ality of SO(4, 4) ; del
Pezzo surfaces, Severi varieties and knots; sextonions and the missing excep-
tional E71/2 , etc ... contains the rigorous mathematical foundations to explore
deeper the results of this work.
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A thorough construction of the exceptional gauge symmetries and dynamics
of bound states comprised of D0−D8 branes using exceptional Jordan algebras
has been attained by [53] within the context of a Clifford-group geometric uni-
fication of forces that was based on a SO(8)− SO(10)− E6 − E7 − E8 model.
A more recent discussion on the geometry of Exceptional Matrix Models and
D0, D8-branes has been presented by [41].

Beyond the topological aspects of Chern-Simons foliations described here, it
is warranted to investigate the local dynamics of higher-dim non-linear sigma
models defined on exceptional group manifolds and coset spaces; i.e to study
the propagation of p-branes in generalized spacetimes described by Jordan al-
gebras and consistent with the conformal (quasi-conformal) group symmetries of
Freudenthal-Kantor triple systems [42], [51]. Unified actions for all p-branes, for
all values of p, have been displayed in Clifford-spaces [76], [77]. Index theorems
in Clifford Modules and Nonholonomic Clifford Structures in Noncommutative
Riemann–Finsler Geometry have been analyzed in detail by [69] .

Despite that some authors [53] interpret the triality symetry of SO(8) as
some manifestation of ”supersymmetry”, the supersymmetric extensions de-
serves further investigation. For instance, the topological G2 String has been
studied in great detail by [75] . Since the number of super-Jordan algebras is ex-
tremely vast it makes this project a very difficult and arduous one. In particular,
Non-associative N = 8 superconformal algebras have been investigated by [74]
. There is always the issue of local and global anomalies that will select certain
theories over others. The fact that D = 27, 28, 56, 112, 224 dimensions are essen-
tial ingredients of this work suggests that there may be many more consistent
and anomaly free string theories in higher dimensions left to be explored and
whose compactifications should yield a very large variety of symmetry groups.

A generalization of a determinant for matrix elements of non-associative
Jordan algebra has been provided by Freudenthal detX = 1

3 (X,X,X) in terms
of the cubic-form . Despite the non-associativity of octonions that precludes the
ordinary definition of a determinant, another interesting possibility to explore is
to write the cubic matrix XABC of 3×3×3 = 27 entries that matches precisely
the number of 27 independent components of the Jordan 3×3 hermitian matrices
belonging to J3[O] algebra, and whose hyper-determinant is :

Det X ∼ εA1A2A3 εB1B2B3 εC1C2C3 XA1B1C1 XA2B2C2 XA3B3C3 . (4.1)

one could then construct a generalization of the Dirac-Nambu-Goto membrane
action :

S =
∫
d3σ [ |Det H| ]1/3. (4.2)

where the hyper-metric H represented by the 3 × 3 × 3 hyper-matrix (cubic
matrix) Habc is defined as the pullback of Hµ1µ2µ3

Habc = Hµ1µ2µ3 ∂aX
µ1 ∂bX

µ1 ∂cX
µ1 . (4.3)
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and the Finslerian-like space-time interval is of the form :

(ds)2 = [ Hµ1µ2µ3 dx
µ1dxµ2dxµ3 ]2/3. (4.4)

Finslerian-like geometries are related to WN geometries . The Exceptional
(magical) Jordan algebras J3[R,C,H,O] were instrumental in W3,WN gravity
[63]. This Jordan algebras/ WN geometry interplay has to be explored further
within the context of W∞ strings. We were able to show upon using a BRST
analysis [25] that a nilpotent BRST charge operator Q2 = 0, associated with
the non-critical W∞ superstring, can be constructed by adjoining a q = N +
1 unitary superconformal model of the super WN algebra, to a critical W∞
superstring spectrum, in the N = ∞ limit. Therefore, we have an anomaly-free
noncritical W∞ superstring in D = 11. Similar BRST analysis followed for the
bosonic noncritical W∞ string , and we found that D = 27 was the required
critical dimension of the target spacetime of the non-critical W∞ string. Since
D = 11, 27 are the dimensions, respectively, of the (alledgedly) anomaly-free
(super) membranes, as was shown by Marquard, Scholl and Kaiser, this W∞
(super) strings/( super) membranes connections warrants a further investigation
Higher-spin theories have reached frontier research status nowadays [7].

Analog of Heterotic string compactifications on 16 dim lattices can also be
achieved since Lattices based on discrete Jordan algebras have been studied by
Gursey [44]. In the case of pure gravity in (curved) M27 spaces, one could as
well perform a Kaluza-Klein compactification of M27 → M11 × N16 along the
internal spaces (R×O)P 2, (C×O)P 2, ..... and generate the F4, E6, E7, E8 local
gauge symmetries resulting from the isometries of the respective projective
planes. For example, the isometries of (O × O)P 2 is E8 so one will end up in
this case with an Einstein-Yang-Mills-Higgs theory in M11 based on the local
E8 gauge symmetry group. Grand Unified Theories based on E8 go back to
Gursey [44], [11], [12] .

Contrary to the standard lore that is not possible to obtain the SU(3) ×
SU(2) × U(1) gauge field structure from a Kaluza-Klein framework in D = 8,
Batakis [10] uncovered an extra SU(2)×U(1) gauge field structure to the SU(3)
gauge field stucture from a Kaluza-Klein mechanism in M4 × CP 2, provided a
nontrivial torsion in the total space is incorporated. Such torsion creates a new
and nontrivial possibility for the accomodation of a fully unified theory in D = 8
not envisioned before in the physics literature. Clifford spaces have torsion [76].
The important results of Smith [53] based on Clifford algebraic structures in
D = 8 have also uncovered a CP 2 internal space. CP 2 internal spaces are also
essential ingredients in the work of [49].

Gursey was among the first to realize the importance of Exceptional Groups
and Division Algebras in Physics [62]; see the monographs by [61], [55], [56].
In this work we have seen the relevance of complex, quaternionic and octo-
nionic spaces within the context of Chern-Simons global dynamics of membranes
and 7-branes. Catto [59] has pointed out the interplay among real-analyticity,
complex-analyticity and quaternionic-analyticity with point-particle world lines,
string worldsheets and membrane world-volumes, respectively. In particular,
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how four-dim conformal field theories can also be formulated on Kulkarni four-
folds leading to a formalism similar to that of 2 dim conformal field theory
on Riemann surfaces [60] where the notion of Fueter quaternionic analyticity
( versus complex analyticity ) plays an essential role. A quaternionic formula-
tion of the D = 4 conformal group and its association with twistors, based on
quaternionic analyticity, has also been investigated by [59].

The notion (and applications) of Octonionic analyticity and the correspond-
ing construction of Octonionic twistors remains yet to be developed and an-
alyzed, to our knowledge. Non-associative Octonionic gravity and Octonionic
Yang-Mills theories have been constructed by [71] and [46]. More recently an
octonionic Ashtekar formulation of gravity was presented by [73]. Octonionic
geometries have been studied to develop Octonionic Hilbert spaces [62] that
describe the colored quark states and provide a geometrical interpretation of
confinement; i.e due to the non-Desargues property of Octonionic Geometry it
makes them non-embeddeble in higher-dim spaces so these Octonionic Hilbert
spaces are finite dimensional and comprised of color-singlets. For algebraic
theories of confinement and Z3 graded extensions/generalizations of ordinary
supersymmetry (Z2 graded Lie algebras ) coined Hypersymmetry, and based on
ternary algebras see [50]. A lot of work remains to be done. We hope that the
present work has been useful in the advancement of the prior work [37], [40],
[43], [57], [62]
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