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Abstract. By recurring to Geometric Probability methods it is shown that the coupling
constants, αEM , αW , αC , associated with the Electromagnetic, Weak and Strong (color)
force are given by the ratios of measures of the sphere S2 and the Shilov boundaries
Q3 = S2 × RP 1, squashed S5, respectively, with respect to the Wyler measure ΩWyler[Q4]
of the Shilov boundary Q4 = S3 × RP 1 of the poly-disc D4 ( 8 real dimensions). The
latter measure ΩWyler[Q4] is linked to the geometric coupling strength αG associated to
the gravitational force. In the conclusion we discuss briefly other approaches to the de-
termination of the physical constants, in particular, a program based on the Mersenne
primes p-adic hierarchy. The most important conclusion of this work is the role played by
higher dimensions in the determination of the coupling constants from pure geometry and
topology alone and which does not require to invoke the anthropic principle .

1 GEOMETRIC PROBABILITY

Geometric Probability [1] is the study of the probabilities involved in geometric problems,
e.g., the distributions of length, area, volume, etc. for geometric objects under stated
conditions. One of the most famous problem is the Buffon’s Needle Problem of finding the
probability that a needle of length l will land on a line, given a floor with equally spaced
parallel lines a distance d apart. The problem was first posed by the French naturalist
Buffon in 1733. For l < d the probability is

P =
1

2π

∫ 2π

0
dθ

l|cos(θ)|
d

=
4l

2πd

∫ π/2

0
cos(θ) =

2l

πd
=

2ld

πd2
. (1.1)

Hence, the Geometric Probability is essentially the ratio of the areas of a rectangle of length
2d, and width l and the area of a circle of radius d . For l > d, the solution is slightly more
complicated [1]. The Buffon needle problem provides with a numerical experiment that
determines the value of π empirically. Geometric Probability is a vast field with profound
connections to Stochastic Geometry.
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Feynman long ago speculated that the fine structure constant may be related to π.
This is the case as Wyler found long ago [2] . We will based our derivation of the fine
structure constant based on Feynman’s physical interpretation of the electron’s charge
as the probability amplitude that an electron emits (or absorbs) a photon. The clue to
evaluate this probability within the context of Geometric Probability theory is provided by
the electron self-energy diagram. Using Feynman’s rules, the self-energy Σ(p) as a function
of the electron’s incoming (outgoing) energy-momentum pµ is given by the integral involving
the photon and electron propagator along the internal lines

−iΣ(p) = (−ie)2
∫ d4k

(2π)4
γµ i

γρ(pρ − kρ)−m

−igµν

k2
γν . (1.2)

The integral is taken with respect to the values of the photon’s energy-momentum kµ . By
inspection one can see that the electron self-energy is proportional to the fine structure
constant αEM ∼ e2, the square of the probability amplitude ( in natural units of h̄ = c = 1
) and physically represents the electron’s emission of a virtual photon (off-shell, k2 6= 0) of
energy-momentum kρ at a given moment, followed by an absorption of this virtual photon
at a later moment.

Based on this physical picture of the electron self-energy graph, we will evaluate the
Geometric Probability that an electron emits a photon at t = −∞ (infinite past) and
re-absorbs it at a much later time t = +∞ (infinite future). The off-shell (virtual) photon
associated with the electron self-energy diagram asymptotically behaves on-shell at the
very moment of emission (t = −∞) and absorption (t = +∞). However, the photon can
remain off-shell in the intermediate region between the moments of emission and absorption
by the electron.

The topology of the boundaries (at conformal infinity) of the past and future light-
cones are spheres S2 (the celestial sphere). This explains why the (Shilov) boundaries are
essential mathematical features to understand the geometric derivation of all the coupling
constants. In order to describe the physics at infinity we will recur to Penrose’s ideas
[11] of conformal compactifications of Minkowski spacetime by attaching the light-cones
at conformal infinity. Not unlike the one-point compactification of the complex plane
by adding the points at infinity leading to the Gauss-Riemann sphere. The conformal
group leaves the light-cone fixed and it does not alter the causal properties of spacetime
despite the rescalings of the metric. The topology of the conformal compactification of real
Minkowski spacetime M̄4 = S3 × S1/Z2 = S3 ×RP 1 is precisely the same as the topology
of the Shilov boundary Q4 of the 4 complex-dimensional poly-disc D4. The action of the
discrete group Z2 amounts to an antipodal identification of the future null infinity I+ with
the past null infinity I−; and the antipodal identification of the past timelike infinity i−

with the future timelike infinity , i+, where the electron emits, and absorbs the photon,
respectively.

Shilov boundaries of homogeneous (symmetric spaces) complex domains, G/K [8], [9]
,[10] are not the same as the ordinary topological boundaries (except in some special
cases). The reason being that the action of the isotropy group K of the origin is not
necesarily transitive on the ordinary topological boundary. Shilov boundaries are the
minimal subspaces of the ordinary topological boundaries which implement the Maldacena-
’T Hooft-Susskind Holographic principle [14] in the sense that the holomorphic data in the
interior ( bulk ) of the domain is fully determined by the holomorphic data on the Shilov
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boundary. The latter has the property that the maximum modulus of any holomorphic
function defined on a domain is attained at the Shilov boundary.

For example, the poly-disc D4 of 4 complex dimensions is an 8 real-dim Hyperboloid
of constant negative scalar curvature that can be identified with the conformal relativistic
curved phase space associated with the electron (a particle) moving in a 4D Anti de
Sitter space AdS4. The poly-disc is a Hermitian symmetric homogeneous coset space
associated with the 4D conformal group SO(4, 2) since D4 = SO(4, 2)/SO(4)×SO(2). Its
Shilov boundary Shilov (D4) = Q4 has precisely the same topology as the 4D conformally
compactified real Minkowski spacetime Q4 = M̄4 = S3 × S1/Z2 = S3 × RP 1. For more
details about Shilov boundaries, the conformal group, future tubes and holography we refer
to the article by Gibbons [13] and [8], [17] .

The role of the conformal group in Gravity in these expressions (besides the holo-
graphic bulk/boundary AdS/CFT duality correspondence [14] ) stems from the Mac-
Dowell Mansouri-Chamseddine-West formulation of Gravity based on the conformal group
SO(3, 2) which has the same number of 10 generators as the 4D Poincare group. The 4D
vielbein ea

µ which gauges the spacetime translations is identified with the SO(3, 2) generator

A[a5]
µ , up to a crucial scale factor R, given by the size of the Anti de Sitter space ( de Sitter

space ) throat. It is known that the Poincare group is the Wigner-Inonu group contraction
of the de Sitter Group SO(4, 1) after taking the throat size R = ∞. The spin-connection
ωab

µ that gauges the Lorentz transformations is identified with the SO(3, 2) generator A[ab]
µ .

In this fashion, the ea
µ, ω

ab
µ are encoded into the A[mn]

µ SO(3, 2) gauge fields, where m, n
run over the group indices 1, 2, 3, 4, 5. A word of caution, Gravity is a gauge theory of
the full diffeomorphisms group which is infinite-dimensional and which includes the trans-
lations. Therefore, strictly speaking gravity is not a gauge theory of the Poincare group.
The Ogiovetsky theorem shows that the diffeomorphisms algebra in 4D can be generated
by an infinity of nested commutators involving the GL(4, R) and the 4D Conformal Group
SO(4, 2) generators.

In [18] we have shown why the MacDowell-Mansouri-Chamseddine-West formulation
of Gravity, with a cosmological constant and a topological Gauss-Bonnet invariant term,
can be obtained from an action inspired from a BF-Chern-Simons-Higgs theory based on
the conformal SO(3, 2) group. The AdS4 space is a natural vacuum of the theory. The
vacuum energy density was derived to be precisely the geometric-mean between the UV
Planck scale and the IR throat size of de Sitter (Anti de Sitter) space . Setting the throat
size to coincide with the future horizon scale (of an accelerated de Sitter Universe ) given by
the Hubble scale ( today ) RH , the geometric mean relationship yields the observed value
of the vacuum energy density ρ ∼ (LP )−2(RH)−2 = (LP )−4(L2

P /R2
H) ∼ 10−120M4

Planck.
Nottale [23] gave a different argument to explain the small value of ρ based on Scale
Relativistic arguments. It was also shown in [18] why the Euclideanized AdS2n spaces are
SO(2n−1, 2) instantons solutions of a non-linear sigma model obeying a double self duality
condition.

A typical objection to the possibility of being able to derive the values of the cou-
pling constants, from pure thought alone, is that there are an infinite number of possible
analytical expressions that accurately reproduce the values of the couplings within the
experimental error bounds. However, this is not our case because once the gauge groups
U(1), SU(2), SU(3 are known there are unique expressions stemming from Geometric Prob-
ability which furnish the values of the couplings. Another objection is that it is a mean-
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ingless task to try to derive these couplings because these are not constants per se but
vary with respect to the energy scale. The running of the coupling constants is an artifact
of the perturbative Renormalization Group program. We will see that the values of the
couplings derived from Geometric Probability are precisely those values that correspond
to the natural physical scales associated with the EM, Weak and Strong forces.

Another objection is that physical measurements of irrational numbers are impossible
because there are always experimental limitations which rule out the possibility of actu-
ally measuring the infinite number of digits of an irrational number. This experimental
constraint does not exclude the possibility of deriving exact expressions based on π as we
shall see. We should not worry also about obtaining numerical values within the error bars
in the table of the coupling constants since these numbers are based on the values of other
physical constants; i.e. they are based on the particular consensus chosen for all of the
other physical constants.

In our conventions, αEM = e2/4π = 1/137.036... in the natural units of h̄ = c = 1,
and the quantities αweak, αcolor are the Geometric Probabilities g̃2

w, g̃2
c , after absorbing the

factors of 4π of the conventional αw = (g2
w/4π), αc = (g2

c/4π) definitions used in the
Renormalization Group (RG) program.

2 THE FINE STRUCTURE CONSTANT

In order to define the Geometric Probability associated with this process of the electron’s
emission of a photon at i− (t = −∞), followed by an absorption at i+ (t = +∞), we must
take into account the important fact that the photon is on-shell k2 = 0 asymptotically (at
t = ±∞), but it can move off-shell k2 6= 0 in the intermediate region which is represented
by the interior of the 4D conformally compactified real Minkowski spacetime which agrees
with the Shilov boundary of D4 (the four-complex-dimensional poly-disc ) Q4 = M̄4 =
S3 × S1/Z2 = S3 × RP 1. Q4 has four-real-dimensions which is half the real-dimensions of
D4 (2× 4 = 8).

The measure associated with the celestial spheres S2 (associated with the future/past
light-cones) at timelike infinity i+, i−, respectively, is V (S2) = 4πr2 = 4π (r = 1). Thus,
the net measure corresponding to the two celestial spheres S2 at timelike infinity i± requires
an overall factor of 2 giving 2V (S2) = 8π ( r = 1 ). The Geometric Probability is defined by
the ratio of the (dimensionless volumes) measures associated with the celestial spheres S2

at i+, i− timelike infinity, where the photon moves on-shell, relative to the Wyler measure
ΩWyler[Q4] associated with the full interior region of the conformally compactified 4D
Minkwoski space Q4 = M̄4 = S3 × S1/Z2 = S3 × RP 1, where the massive electron is
confined to move, as it propagates from i− to i+, (and off − shell photons can also live
in ) :

αEM =
2V (S2)

ΩWyler[Q4]
=

8π

ΩWyler[Q4]
=

1

137.03608...
. (2.1a)

after inserting the Wyler measure

ΩWyler[Q4] =
V (S4) V (Q5)

[ V (D5) ]
1
4

= (
8π2

3
)(

8π3

3
)(

π5

24 × 5!
)−1/4. (2.1b)
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The Wyler measure ΩWyler[Q4] [2] is not the standard measure (dimensionless volume)
V (Q4) = 2π3 calculated by Hua [9] but requires some elaborate procedure.

It was realized by Smith [4] that the presence of the Wyler measure in the expression for
αEM given by eq-(2-1) was consistent with Wheeler ideas that the observed values of the
coupling constants of the Electromagnetic, Weak and Strong Force can be obtained if the
geometric force strengths (measures related to volumes of complex homogenous domains
associated with the U(1), SU(2), SU(3) groups, respectively ) are divided by the geometric
force strength of Gravity αG (related to the SO(3, 2) MMCW Gauge Theory of Gravity )
and which is not the same as the 4D Newton’s gravitational constant GN ∼ m−2

Planck.
Furthermore, the expression for ΩWyler[Q4] is also consistent with the Kaluza-Klein

compactification procedure of obtaining Maxwell’s EM in 4D from pure Gravity in 5D. In
particular, in order to evaluate the Wyler measure ΩWyler[Q4] one requires to embed D4 into
D5 because the Shilov boundary space Q4 = S3×RP 1 is not adequate enough to implement
the action of the SO(5) group, the compact version of the Anti de Sitter Group SO(3, 2)
that is required in the MacDowell-Mansouri-Chamseddine-West (MMCW) SO(3, 2) Gauge
formulation of Gravity. However, the Shilov boundary of D5 given by Q5 = S4 × RP 1 is
adequate enough to implement the action of SO(5) via isometries (rotations) on the internal
symmetry space S4 = SO(5)/SO(4). This justifies the embedding procedure of D4 → D5

The 5 complex-dimensional poly-disc D5 = SO(5, 2)/SO(5)×SO(2) is the 10 real-dim
Hyperboloid H10 corresponding to the relativistic curved phase space of a particle moving
in 5D Anti de Sitter Space AdS5 . The Shilov boundary Q5 of D5 has 5 real dimensions
(half of the 10-real-dim of D5). One cannot fail to notice that the hyperboloid H10 can be
embedded in the 11-dim pseudo-Euclidean R9,2 space, with two-time like directions. This
is where 11-dim lurks into our construction.

Having displayed Wyler’s expression of the fine structure constant αEM in terms of the
ratio of dimensionless measures , we shall present a Fiber Bundle (a sphere bundle fibration
over a complex homogeneous domain) derivation of the Wyler expression based on the
bundle S4 → E → D5. The physical reasoning behind the role of the Shilov boundaries
is the following. Wyler has shown that it is possible to map an unbounded physical
domain (the interior of the future light cone) onto the interior of a homogenous bounded
domain without losing the causal structure and on which there exists also a complex
structure. Massless gauge bosons live on the lightcone, a null boundary in Minkowski
spacetime. Thus, upon performing the Wyler map, the gauge bosons (photon in this case)
are confined to live on the Shilov boundary while the electron is confined to the interior
of the homogenous bounded domain. We will show below why the propagation (via the
determinant of the Feynman propagator) of the electron through the interior of the domain
D5 is what accounts for the ”obscure” factor V (D5)

1/4 in Wyler’s formula for αEM .
We begin by explaining why Wyler’s measure ΩWyler[Q4] in eq-(2-1) corresponds to the

measure of a S4 bundle fibered over the base curved-space D5 = SO(5, 2)/SO(5)× SO(2)
and weighted by a factor of V (D5)

−1/4. This S4 → E → D5 bundlle is linked to the
MMCW SO(3, 2) Gauge theory formulation of gravity and explains the essential role of
gravity in Wyler’s formula [4] corroborating Wheeler’s ideas that one must normalize the
geometric force strengths with respect to gravity in order to obtain the coupling constants.
The subgroup H = SO(5) of the isotropy group (at the origin) K = SO(5) × SO(2)
acts naturally on the Fibers F = S4 = SO(5)/SO(4), the internal symmetric space,
via isometries (rotations). Locally, and only locally, the Fiber bundle E is the product

5



D5 × S4. The restriction of the Fiber bundle E to the Shilov boundary Q5 is written
as E|Q5 and locally is the product of Q5 × S4, but this is not true globally unless the
fiber bundle admits a global section (the bundle is trivial). For this reason the volume
V (E|Q5) does not necessary always factorize as V (Q5)×V (S4). Setting aside this subtlety,
we shall pursue a more physical route, already suggested by Wyler 1 , to explain the
origin of the ”obscure normalization” factor V (D5)

1/4 in Wyler’s measure ΩWyler[Q4] =
(V (S4)× V (Q5)/V (D5)

1/4), which suggests that the volumes may not factorize.
The Feynman propagator of a massive scalar particle (inverse of the Klein-Gordon

operator) (DµD
µ−m2)−1 corresponds to the kernel in the Feynman path integral that in

turn is associated with the Bergman kernel Kn(z, z′) of the complex homogenous domain
Dn which is proportional to the Bergman constant kn ≡ 1/V (Dn).

(DµD
µ−m2)−1(xµ) =

1

(2πµ)D

∫
dDp

e−ipµxµ

p2 −m2 + iε
↔ Kn(z, z̄′) =

1

V (Dn)
( 1− zz̄′ )−2n.

(2.2)
where we have introduced a momentum scale µ to match units in the Feynman propagator
expression, and the Bergman Kernel Kn(z, z̄′) of Dn whose dimensionless entries are z =
(z1, z2, ....., zn), z′ = (z′1, z

′
2, ...., z

′
n) is given as

Kn(z, z̄′) =
1

V (Dn)
( 1− zz̄′ )−2n (2.3a)

V (Dn) is the dimensionless Euclidean volume found by Hua V (Dn) = (πn/2n−1n!) and
satisfies the reproducing and normalization properties

f(z) =
∫

Dn

f(ξ) Kn(z, ξ) dnξ dnξ̄.
∫

Dn

Kn(z, z̄) dnz dnz̄ = 1. (2.3b)

The key result that can be inferred from the Feynman propagator (kernel )↔ Bergman
kernel Kn correspondence, when µ = 1, is the (2π)−D ↔ (V (Dn))−1 correspondence;
i.e. the fundamental hyper-cell in momentum space (2π)D (when µ = 1) corresponds to
the dimensionless volume V (Dn) of the domain, where D = 2n real dimensions. The
regularized vacuum-to-vacuum amplitude of a free real scalar field is given in terms of the
zeta function ζ(s) =

∑
i λ

−s
i associated with the eigenvalues of the Klein-Gordon operator

by

Z = < 0 | 0 > =
√

det (DµDµ −m2)−1 ∼ exp [
1

2

dζ

ds
(s = 0)]. (2.4)

In case of a complex scalar field we have to double the number of degrees of freedom, the
amplitude then factorizes into a product and becomes Z = det (DµD

µ −m2)−1.
Since the Dirac operator D = γµDµ + m is the ”square-root” of the Klein-Gordon

operator D†D = DµD
µ −m2 +R ( R is the scalar curvature of spacetime that is zero in

Minkowski space ) we have the numerical correspondence√
det (D)−1 =

√
det (DµDµ −m2)−1/2 =

√√
det (DµDµ −m2)−1 ↔ k1/4

n = (
1

V (Dn)
)1/4.

(2.5)

1We thank Frank (Tony) Smith for this information
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because det D† = det D, and

det D = e trace ln D = e trace ln (DµDµ−m2)1/2

= e
1
2

tr ln (DµDµ−m2) =
√

det (DµDµ −m2).
(2.6)

The vacuum-to-vacuum amplitude of a complex Dirac field Ψ (a fermion, the electron) is
Z = det (γµDµ + m) = det D ∼ exp [ − (dζ/ds)(s = 0) ]. Notice the det (D) behavior
of the fermion versus the det (DµD

µ − m2)−1 behavior of a complex scalar field due to
the Grassmanian nature of the Gaussian path integral of the fermions. The vacuum-to-
vacuum amplitude of a Majorana (real) spinor (half of the number of degrees of freedom

of a complex Dirac spinor) is Z =
√

det (γµDµ + m). Because the complex Dirac spinor

encodes both the dynamics of the electron and its anti-particle, the positron (the negative
energy solutions), the vacuum-to-vacuum amplitude corresponding to the electron (positive

energy solutions, propagating forward in time) must be then Z =
√

det (γµDµ + m) .

Therefore, to sum up, the origin of the ”obscure” factor V (D5)
1/4 in Wyler’s formula

is the normalization condition of V (S4)× V (Q5) by a factor of V (D5)
1/4 stemming from

the correspondence V (D5)
1/4 ↔ Z =

√
det (γµDµ + m) and which originates from the

vacuum-to-vacuum amplitude of the fermion (electron) as it propagates forward in time
in the domain D5. These last relations emerge from the correspondence between the
Feynman fermion (electron) propagator in Minkowski spacetime and the Bergman Kernel
of the complex homogenous domain after performing the Wyler map between an unbounded
domain (the interior of the future lightcone of spacetime) to a bounded one. In general, the
Bergman Kernel gives rise to a Kahler potential F (z, z̄) = log K(z, z̄) in terms of which
the Bergman metric on Dn is given by

gij̄ =
∂2F

∂zi∂z̄i
. (2.7)

We must emphasize that this Geometric probability explanation is very different from
the interpretations provided in [3,4,5] and properly accounts for all the numerical factors.
Concluding, the Geometric Probability that an electron emits a photon at t = −∞ and
absorbs it at t = +∞, is given by the ratio of the dimensionless measures (volumes) :

αEM =
2V (S2)

ΩWyler[Q4]
= (8π)

1

V (S4)

1

V (Q5)
[ V (D5) ]

1
4 =

9

8π4
(

π5

24 × 5!
)1/4 =

1

137.03608....
. (2.8)

in very good agreement with the experimental value. This is easily verified after one inserts
the values of the Euclideanized regularized volumes found by Hua [9]

V (D5) =
π5

24 × 5!
. V (Q5) =

8π3

3
. V (S4) =

8π2

3
. (2.19)

In general

V (Dn) =
πn

2n−1n!
. V (Sn−1) =

2πn/2

Γ(n/2)
. (2.10)
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V (Qn) = V (Sn−1 ×RP 1) = V (Sn−1)× V (RP 1) =
2πn/2

Γ(n/2)
× π =

2π(n+2)/2

Γ(n/2)
. (2.11)

Objections were raised to Wyler’s original expression by Robertson [3]. One of them
was that the hyperboloids (discs) are not compact and whose volumes diverge because the
Lobachevsky metric diverges on the boundaries of the poly-discs. Gilmore explained [3] why
one requires to use the Euclideanized regularized volumes because Wyler had shown that
it is possible to map an unbounded physical domain (the interior of the future light cone)
onto the interior of a homogenous bounded domain without losing the causal structure and
on which there exist also a complex structure. A study of Shilov boundaries, holography
and the future tube can be found in [13].

Furthermore, in order to resolve the scaling problems of Wyler’s expression raised by
Robertson, Gilmore showed why it is essential to use dimensionless volumes by setting the
throat sizes of the Anti de Sitter hyperboloids to r = 1, because this is the only choice for
r where all elements in the bounded domains are also coset representatives, and therefore,
amount to honest group operations. Hence the so-called scaling objections against Wyler
raised by Robertson were satisfactory solved by Gilmore [3]. Thus, all the volumes in this
section and in the next sections, are based on setting the scaling factor r = 1.

The question as to why the value of αEM obtained in Wyler’s formula is precisely
the value of αEM observed at the scale of the Bohr radius aB, has not been solved, to
our knowledge. The Bohr radius is associated with the ground (most stable) state of
the Hydrogen atom [4]. The spectrum generating group of the Hydrogen atom is well
known to be the conformal group SO(4, 2) due to the fact that there are two conserved
vectors, the angular momentum and the Runge-Lentz vector. After quantization, one has
two commuting SU(2) copies SO(4) = SU(2) × SU(2). Thus, it makes physical sense
why the Bohr-scale should appear in this construction. Bars [15] has studied the many
physical applications and relationships of many seemingly distinct models of particles,
strings, branes and twistors, based on the (super) conformal groups in diverse dimensions.
In particular, the relevance of two-time physics in the formulation of M, F, S theory has
been advanced by Bars for some time. The Bohr radius corresponds to an energy of
137.036× 2× 13.6 eV ∼ 3.72× 103 eV . It is well known that the Rydberg scale, the Bohr
radius, the Compton wavelength of electron, and the classical electron radius are all related
to each other by a successive scaling in products of αEM .

To finalize this section and based on the MMCW SO(3, 2) Gauge Theory formulation
of Gravity, with a Gauss-Bonnet topological term plus a cosmological constant, the (di-
mensionless) Wyler measure was defined as the geometric coupling strength of Gravity [4]
:

ΩWyler[Q4] =
V (S4) V (Q5)

[ V (D5) ]
1
4

≡ αG . (2.12)

The relationship between αG and the Newtonian gravitational G constant is based on the
value of the coupling (1/16πG) appearing in the Einstein-Hilbert Lagrangian (R/16πG),
and goes as follows :

(16πG)(m2
Planck) = αEM αG = 8π ⇒ G =

1

16π

8π

m2
Planck

=
1

2m2
Planck

⇒
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Gm2
proton =

1

2
(
mproton

mPlanck

)2 ∼ 5.9× 10−39. (2.13)

and in natural units h̄ = c = 1 yields the physical force strength of Gravity at the Planck
Energy scale 1.22× 1019GeV . The Planck mass is obtained by equating the Schwarzschild
radius 2GmPlanck to the Compton wavelength 1/mPlanck associated with the mass; where
mPlanck

√
2 = 1.22 × 1019 GeV and the proton mass is 0.938 GeV . Some authors define

the Planck mass by absorbing the factor of
√

2 inside the definition of mPlanck = 1.22 ×
1019 GeV .

3 THE WEAK AND STRONG COUPLINGS

We turn now to the derivation of the other coupling constants. The Fiber Bundle picture of
the previous section is essential in our construction. The Weak and the Strong geometric
coupling constant strength, defined as the probability for a particle to emit and later
absorb a SU(2), SU(3) gauge boson, respectively, can both be obtained by using the main
formula derived from Geometric Probability (as ratios of dimensionless measures/volumes)
after one identifies the suitable homogeneous domains and their Shilov boundaries to work
with.

The physical reasoning behind the role of the Shilov boundaries is the following. It was
mentioned earlier that Wyler had shown that it is possible to map an unbounded physical
domain (the interior of the future light cone) onto the interior of a homogenous bounded
domain without losing the causal structure and on which there exists also a complex
structure. Massless gauge bosons live on the lightcone, a null boundary in Minkowski
spacetime. Thus, upon performing the Wyler map, the gauge bosons are confined to live
on the Shilov boundary. Because the SU(2) bosons W±, Z0 and the eight SU(3) gluons
have internal degrees of freedom (they carry weak and color charges) one must also include
the measure associated with the their respective internal spaces; namely, the relevant
measures relevant to Geometric Probability calculations are the measures corresponding
to the appropriate sphere bundles fibrations defined over the complex bounded homogenous
domains Sm → E → Dn.

Furthermore, the Geometric Probability interpretation for αWeak, αStrong agrees with
Wheeler’s ideas [4] that one must normalize these geometric force strengths with respect
to the geometric force strength of gravity αG = ΩWyler[Q4] found in the last section. Hence,
after these explanations, we will show below why the weak and strong couplings are given,
respectively, by the ratio of the measures (dimensionless volumes) :

αWeak =
Ω[Q3]

ΩWyler[Q4]
=

Ω[Q3]

αG

=
Ω[Q3]

(8π/αEM)
. (3.1)

αColor =
Ω[squashed S5]

ΩWyler[Q4]
=

Ω[squashed S5]

αG

=
Ω[squashed S5]

(8π/αEM)
. (3.2)

As always, one must insert the values of the regularized (Euclideanized) dimensionless
volumes provided by Hua [9] (set the scale r = 1 ). We must also clarify and emphasize
that we define the quantities αweak, αcolor as the probabilities g̃2

w, g̃2
c , by absorbing the
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factors of 4π in the conventional αw = (g2
w/4π), αc = (g2

c/4π) definitions (based on the
Renormalization Group (RG) program) into our definitions of probability g̃2

w, g̃2
c .

Let us evaluate the αWeak. The internal symmetry space is CP 1 = SU(2)/U(1) ( a
sphere S2 ∼ CP 1) where the isospin group SU(2) acts via isometries on CP 1. The Shilov
boundary of D2 is Q2 = S1×RP 1 but is not adequate enough to accommodate the action
of the isospin group SU(2). One requires to have the Shilov boundary of D3 given by
Q3 = S2×S1/Z2 = S2×RP 1 that can accommodate the action of the SU(2) group on S2.
A Fiber Bundle over D3 = SO(3, 2)/SO(3)×SO(2) whose H = SO(3) ∼ SU(2) subgroup
of the isotropy group (at the origin ) K = SO(3)× SO(2) acts on S2 by simple rotations.
Thus, the relevant measure is related to the fiber bundle E restricted to Q3 and is written
as V (E|Q3).

One must notice that due to the fact that the SU(2) group is a double-cover of SO(3),
as one goes from the SO(3) action on S2 to the SU(2) action on S2 , one must take into
account an extra factor of 2 giving then

V (CP 1) = V (SU(2)/U(1) = 2 V (SO(3)/U(1)) = 2 V (S2) = 8π. (3.3)

In order to obtain the weak coupling constant due to the exchange of W±Z0 bosons
in the four-point tree-level processes involving four leptons, like the electron, muon, tau,
and their corresponding neutrinos (leptons are fundamental particles that are lighter than
mesons and baryons) which are confined to move in the interior of the domain D3, and can
emit (absorb) SU(2) gauge bosons, W±Z0, in the respective s, t, u channels, one must take
into account a factor of the square root of the determinant of the fermionic propagator,√

det D−1 =
√

det (γµDµ + m)−1, for each pair of leptons, as we did in the previous section
when an electron emitted and absorbed a photon. Since there are two pairs of leptons in
these four-point tree-level processes involving four leptons, one requires two factors of√

det (γµDµ + m)−1, giving a net factor of det (γµDµ + m)−1 and which corresponds now

to a net normalization factor of k1/2
n = (1/V (D3))

1/2, after implementing the Feynman
kernel ↔ Bergman kenel correspondence. Therefore, after taking into account the result
of eq-(3-3), the measure of the S2 → E → D3 bundle, restricted to the Shilov boundary
Q3, and weighted by the net normalization factor (1/V (D3))

1/2, is

Ω(Q3) = 2V (S2)
V (Q3)

V (D3)1/2
. (3.4)

Therefore, the Geometric probability expression is given by the ratio of measures (dimen-
sionless volumes) :

αWeak =
Ω[Q3]

ΩWyler[Q4]
=

Ω[Q3]

αG

=
2V (S2) V (Q3)

V (D3)1/2

αEM

8π
=

(8π) (4π2) (
π3

24
)−1/2 αEM

8π
= 0.2536.... (3.5)

that corresponds to the weak coupling constant (g2/4π based on the RG convention) at an
energy of the order of

E = M = 146 GeV ∼
√

M2
W+

+ M2
W− + M2

Z . (3.6)
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after we have inserted the expressions (setting the scale r = 1)

V (S2) = 4π. V (Q3) = 4π2. V (D3) =
π3

24
. (3.7)

into the formula (3-5) . The relationship to the Fermi coupling GFermi goes as follows
(after setting the energy scale E = M = 146 GeV ) :

GF ≡
αW

M2
⇒ GF m2

proton = (
αW

M2
) m2

proton = 0.2536× (
mproton

146 GeV
)2 ∼ 1.04× 10−5. (3.8)

in very good agreement with experimental observations. Once more, it is unknown why
the value of αWeak obtained from Geometric Probability corresponds to the energy scale
related to the W+, W−, Z0 boson mass, after spontaneous symmetry breaking.

Finally, we shall derive the value of αColor from eq-(3-2) after one defines what is the
suitable fiber bundle. The calculation is based on the book by L. K. Hua [9] (pages 40, 93).
The symmetric space with the SU(3) color force as a local group is SU(4)/SU(3)× U(1)
which corresponds to a bounded symmmetric domain of type I(1, 3) and has a Shilov
boundary that Hua calls the ”characteristic manifold” CI(1, 3). The volume V (CI(m, n))
is:

V (CI) =
(2π)mn−m(m−1)/2

(n−m)!(n−m + 1)!...(n− 1)!
. (3.9)

so that for m = 1 and n = 3 the relevant volume is then V (CI) = (2π)3/2! = 4π3. We
must remark at this point that CI(1, 3) is not the standard round S5 but is the squashed
five-dimensional S̃5 2 .

The domain of which CI(1, 3) is the Shilov boundary is denoted by Hua as RI(1, 3)
and whose volume is

V (RI) =
1!2!...(m− 1)!1!2!...(n− 1)! πmn

1!2!...(m + n− 1)!
. (3.10)

so that for m = 1 and n = 3 it gives V (RI) = 1!2!π3/1!2!3! = π3/6 and it also agrees with
the volume of the standard six-ball.

The internal symmetry space (fibers) is CP 2 = SU(3)/U(2) whose isometry group is the
color SU(3) group. The base space is the 6D domain B6 = SU(4)/U(3) = SU(4)/SU(3)×
U(1) whose subgroup SU(3) of the isotropy group (at the origin) K = SU(3)× U(1) acts
on the internal symmetry space CP 2 via isometries. In this special case, the Shilov and
ordinary topological boundary of B6 both coincide with the squashed S5 [4].

Because Gilmore, in response to Robertson’s objections to Wyler’s formula, has shown
that one must set the scale r = 1 and use dimensionles volumes, a bundle map E → E ′

from the bundle CP 2 → E → B6 to the bundle S4 → E ′ → B6 is required, because if
we were to equate the volumes V (CP 2) = V (S4, r = 1) [4], this would be tantamount of
choosing another scale R (the unit of geodesic distance) in CP 2 that is different from
the unit of geodesic distance in S4 when the radius r = 1, as required by Gilmore. Upon
performing the bundle map one can go ahead and replace the V (CP 2) for V (S4, r = 1).

2Frank (Tony) Smith, private communication
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Using again the same results described after eq-(2-2), since a quark can emit and
absorb later on a SU(3) gluon (a one-loop process), and is confined to move in the interior
of the domain B6, there is one factor only of the square root of the determinant of the

Dirac propagator
√

det D−1 =

√√
det (DµDµ −m2)−1 and which is associated with a

normalization factor of k1/4
n = (1/V (B6))

1/4. Therefore, the measure of the bundle S4 →
E ′ → B6 restricted to the squashed S5 (Shilov boundary of B6), and weighted by the
normalization factor (1/V (B6))

1/4, is then

Ω[squashed S5] =
V (S4) V (squashed S5)

V (B6)1/4
. (3.11)

and the ratio of measures

αs =
Ω[squashed S5]

ΩWyler[Q4]
=

Ω[squashed S5]

αG

=
V (S4) V (squashed S5)

V (B6)1/4

αEM

8π
=

(
8π2

3
) (4π3) (

π3

6
)−1/4 αEM

8π
= 0.6286..... (3.12)

matches, remarkably, the strong coupling value αs = g2/4π at an energy E related precisely
to the pion masses [4]

E = 241 MeV = 0.241 GeV ∼
√

m2
π+ + m2

π− + m2
π0 . (3.13)

For the specific numerical details of the step-by-step evaluation in energy of the Renormal-
ization Group flow equation [27] that yields αs(E = 241 MeV ) ∼ 0.6286 we refer to [4].
Once more, it is unknown why the value of αColor obtained from Geometric Probability
corresponds to the energy scale E = 241 MeV related to the masses of the pions. The
pions are the known lightest quark-antiquark pairs that feel the strong interaction.

4 MERSENNE PRIMES p-ADIC HIERARCHY AND

OTHER APPROACHES

To conclude, we briefly mention other approaches to the determination of the physical
parameters. A hierarchy of coupling constants, including the cosmological constant, based
on Seifert-spheres fibrations was undertaken by [25]. The ratios of particle masses, like the
proton to electron mass ratio mp/me ∼ 6π5 has also been calculated using the volumes of
homogeneous bounded domains [4], [5] . A charge-mass-spin relationship was investigated
in [26]. It is not known whether this procedure should work for Grand Unified Theories
(GUT) based on the groups like SU(5), SO(10), E6, E7, E8, meaning whether or not one
could obtain, for example, the SU(5) coupling constant consistent with the Grand Unifi-
cation Models based on the SU(5) group and with the Renormalization Group program at
the GUT scale.

Beck [7] has obtained all of the Standard Model parameters by studying the numerical
minima (and zeros) of certain potentials associated with the Kaneko coupled two-dim lat-
tices (two-dim non-linear sigma-like models which resemble Feynman’s chess-board lattice
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models) based on Stochastic Quantization methods. The results by Smith [4] (also based
on Feynman’s chess board models and hyper-diamond lattices ) are analytical rather than
being numerical [7] and it is not clear if there is any relationship between these latter two
approaches. Noyes has proposed an iterated numerical hierarchy based on Mersenne primes
Mp = 2p − 1 for certain values of p = primes [19], and obtained a quite large number of
satisfactory values for the physical parameters. An interesting coincidence is related to the
iterated Mersenne prime sequence

M2 = 22 − 1 = 3, M3 = 23 − 1 = 7, M7 = 27 − 1 = 127, 3 + 7 + 127 = 137

M127 = 2127 − 1 ∼ 1.69× 1038 ∼ (
MPlanck

mproton

)2. (4.1)

Pitkanen has also developed methods to calculate physical masses recurring to a p-adic
hierarchy of scales based on Mersenne primes [20].

An important connection between anomaly cancellation in string theory and perfect
even numbers was found in [22]. These are numbers which can be written in terms of sums
of its divisors, including unity, like 6 = 1 + 2 + 3, and are of the form P (p) = 1

2
2p(2p − 1)

if, and only if, 2p− 1 is a Mersenne prime. Not all values of p = prime yields primes. The
number 211 − 1 is not a Mersenne prime, for example. The number of generators of the
anomaly free groups SO(32), E8 × E8 of the 10-dim superstring is 496 which is an even
perfect number. Another important group related to the unique tadpole-free bosonic string
theory is the SO(213) = SO(8192) group related to the bosonic string compactified on the
E8 × SO(16) lattice. The number of generators of SO(8192) is an even perfect number
since 213 − 1 is a Mersenne prime. For an introduction to p-adic numbers in Physics and
String theory see [21].

A lot more work needs to be done to be able to answer the question: is all this just a
mere numerical coincidence or is it design ? However, the results of the previous section
indicate that it is very unlikely that these results were just a mere numerical coincidence
(senseless numerology) and that indeed the values of the physical constants could be actu-
ally calculated from pure thought, rather than invoking the anthropic principle; i.e. namely,
based on the interplay of harmonic analysis, geometry, topology, higher dimensions and,
ultimately, number theory. The fact that the coupling constants involved the ratio of mea-
sures (volumes) may cast some light on the role of the world-sheet areas of strings, and
world volumes of p-branes, as they propagate in target spacetime backgrounds of diverse
dimensions.
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