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Abstract 

This paper follows in the tradition of direct-action versions of electromagnetism having the aim of 
avoiding a balance of infinities wherein a mechanical mass offsets an infinite electromagnetic mass 
so as to arrive at a finite observed value. However, the direct-action approach ultimately failed in 
that respect because its initial exclusion of self-action was later found to be untenable in the 
relativistic domain. Pursing the same end, this paper examines instead a version of 
electromagnetism wherein mechanical action is excluded and self-action is retained. It is shown that 
the resulting theory is effectively interacting due to the presence of infinite forces. A vehicle for the 
investigation is a pair of classical point charges in a positronium-like arrangement for which the 
orbits are found to be self-sustaining and naturally quantized. 
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1. Introduction 

In using the classical Maxwell theory to perform practical calculations one rarely deals explicitly 
with the infinite electromagnetic mass resulting from electromagnetic self-action. Implicitly, in the 
classical analogue of QED mass-renormalization, one assumes a negative infinite mechanical mass 
canceling the positive infinite electromagnetic mass of a point charge so as to arrive at the finite 
observed value. Though this balance of infinities may be unattractive, a success of the theory is a 
reasonable expression for the von Laue 4-vector, which can be obtained from the retarded action of a 
charged sphere upon itself - eventually letting the radius go to zero (see Boyer [1] and also Erber [2] 
for a review). The self-action that gives rise to the infinite electromagnetic mass therefore appears to 
be necessary to explain both radiation damping and reaction to acceleration. 
 Competing with the Maxwell theory is the direct-action version of classical electrodynamics 
(direct-action CED). The theory looked promising because it permitted the explicit exclusion of self-
action, avoiding at the outset the infinite electromagnetic contribution to the mass [3-5]. One was 
then free to posit a finite mechanical mass without requiring a balance of infinities. The other 
distinguishing characteristic of the direct-action theory is that there are no vacuum degrees of 
freedom. As a result of the latter one then has the problem of somehow explaining the (observed) 
retarded field of a point source (having propagator retG G G+ −= + ) by the collective action of multiple 

sources whose influence the theory demands propagate as G+ . Without that explanation there can be 

neither radiation nor von Laue 4-vector in the Newton-Lorentz equation of motion. 
 Wheeler and Feynman [6,7] made progress in favor of the direct-action theory by providing 
an explanation for the von Laue 4-vector as arising from the effects of distant absorbers on the 
forward light cone. In their version of direct-action EM the matter was treated classically, self-action 
was excluded, and future absorption explained retarded radiation and radiation reaction. The 
success of their explanation, however, depended on Cosmologies which are not currently favored [8-
13]. Even so, the removal of infinities would seem to be a point in favor of direct-action CED over the 
Maxwell theory. Subsequently Hoyle and Narlikar [14] gave a quantum-mechanical version of the 
Wheeler-Feynman theory wherein the matter was treated by the Feynman path integral method. 
(Traditional quantization via a Hamiltonian is problematical because the action is in two times.) 
Davies [15] achieved the same goal using an S-matrix approach. In addition to demonstrating the 
emergence of retarded radiation, these works also gave, for example, the correct level shifts normally 
associated with the ZPF, i.e., processes traditionally regarded as mandating field quantization. (Pegg 
[16] gives a short calculation showing how the direct-action fields mimic the presence of the ZPF.) 
 Subsequently Feynman decided that the exclusion of self-action from CED was questionable 
because self-action was necessary for a satisfactory explanation of intermediate processes in QED 
[17]. He predicted that a consistent relativistic theory of direct action would, after all, have to retain 
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self-action. That conclusion was supported in the comprehensive review by Pegg [10], and also by the 
author [11,18]. Feynman’s suggestion was implemented by Hoyle and Narlikar in an extension of 
their earlier path integral work to the relativistic domain [19,20]. Similarly, Davies incorporated 
self-action in an extension to the relativistic domain of his earlier scattering matrix approach to 
matter quantization [21]. These works produced results in accord with QED at all perturbation 
orders, confirming the prediction by Feynman. But along with the return of the self-action came the 
usual problems requiring the usual techniques for dealing with divergent self-energy. In the end the 
direct-action theory necessitated the same delicate balance between infinities demanded of the 
Maxwell theory in order to arrive at the observed mass. 
 The undertaking reported here is a continuation of the search for an alternative to the 
balance of infinite masses. Its focus is a classical theory of EM wherein the action is entirely 

electromagnetic - without the usual term 2
mechI m dx= − ∫ for mechanical mass-action. It is clear 

from the foregoing that self-action must be retained in any new approach, independent of its 
Maxwell or direct-action heritage. The immediate consequence of such a modification therefore is 
that the total mass must be pure electromagnetic and infinite - uncompensated by mechanical mass.  
 The obvious advantage of ‘uncompensated EM’ is that it does not require a balance of 
infinities. Less apparent is how such a theory could overcome the obvious objection that charged 
particles with uncompensated electromagnetic mass apparently cannot ever effectively interact. But 
an EM theory with uncompensated mass turns out to provide for the existence of the infinite forces 
necessary to accelerate these infinite (electromagnetic) masses. The possibility of such forces may be 
inferred from the traditional expression for the Lorentz force tensor wherein, (using the notation of 

Jackson [22]), one observes the persistent motif of a denominator of the form ( )1− v.n raised to some 

positive power. Here v is the velocity of the source with respect to the reference frame, n is the unit 
vector from the source (traditionally at the retarded time) to the field point. The implication, if those 
expressions remain applicable, is that charges feel an infinite force in the event that they reside 
simultaneously on the light cone and the Cerenkov cone of another charge1. A second objection may 
now be raised that, at the least, this requires that the latter move superluminally, which possibility 
is normally excluded by the traditional form of the action. However, classically, the restriction to 

 
1 Here the word cone is being used in two different ways. The light cone is of co-dimension 1 in space-
time, with symmetry axis parallel with the time direction. In 2+1 therefore, the light-cone is an 
ordinary 2-surface double-cone. The Cerenkov cone is also of co-dimension 1 in space-time, but has 
symmetry its axis parallel with v in the space ‘plane’ t = constant. The Cerenkov-cone is therefore an 
ordinary 2-surface double-cone in 3+0, but in 2+1 is a pair of planes. 
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sub-luminal motion is a consequence of the form of the mechanical mass action, and therefore that 
restriction is absent from uncompensated classical EM.  
 Given the rehabilitation of self-action in direct-action EM, both the Maxwell and direct 
action formulations are possible vehicles for the ‘technique’ of non-compensation. In this paper we 
consider only the direct action version of the theory, mainly on the grounds of simplicity; outside of 
the particle interactions there are no incoming or outgoing radiation fields complicating the analysis. 
We investigate here a relativistic classical implementation of uncompensated EM, and leave aside 
for the present the possibility of an implementation of a relativistic quantum version along the lines 
of, for example Hoyle and Narlikar [19]. 
 The remainder of the document is structured as follows. The next section presents the 
uncompensated version of direct-action CED. Self-action is obtained through a limiting procedure 
analogous to letting the size ∆ of the point particle tend to zero from some initially finite value. 
Mathematically, it resembles the regularization method of the Feynman propagator GF. Some care is 
required in deriving the Euler equation from the action; traditional derivations do not generally 
account for the possibility of superluminal motion, which becomes a possibility when there is no 
mechanical mass. A detailed derivation of the Euler equation is given in the appendix. The 
plausibility of the limiting procedure – of letting the size ∆ tend to zero − is demonstrated by solving 
for the trivial case of uniform motion. In sections 3 and 4 is demonstrated the main claim of the 
paper, namely that the theory is effectively interacting despite the infinite self-energies. The vehicle 
for the demonstration is a pair of oppositely charged particles moving at constant speed on a self-
sustaining circular path about a common origin. This positronium-like arrangement is then to be 
shown to be solution of the Euler equation. In section 3 is identified a principal constraint - the 
‘Cerenkov cone condition’ - in order that the arrangement be a solution. Further parameters of the 
motion are determined in section 4 to sufficient degree in ∆ that the motion satisfies all the singular 
components of the Euler equation as 0+∆ → . That is, the parameters are chosen so that the motion 

is at least consistent with the action of the singular forces. The total energy and angular momentum 
of the arrangement is computed in section 5, referring to the Appendix to provide general 
expressions for these quantities for a two-time action of which direct-action EM is a particular case. 
In section 6 there is some brief discussion of the results. 
 

2. Uncompensated direct action EM 

2.1 Notation 

To reduce reliance on indexes and improve readability 4-vectors (which here are not necessarily 

Lorentz vectors) are denoted by a lower-case Latin symbol, { } ( )0 1 2 3, , ,ax x x x x x≡ = , where the 
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spatial basis is Cartesian, and where the default, when the vector appears alone, is the Lorentz 

contravariant form. The scalar product of two vectors x and y is written a
ax y x y≡� (vectors 

appearing to the right of the operator � are in Lorentz covariant form). The anti-symmetric product 

is denoted by { }a b a bx y x y y x∧ ≡ − . The second rank force tensor is denoted by { }abF F≡ , with the 

right scalar product F u� taken to mean { }ab
bF u . λ and λ′ denote a pair of ordinal parameters for 

the trajectories of point particles; ( )j jx x λ≡ represents the 4-position of particle j at ordinal time λ,

and ( )k kx x λ′ ′≡ represents the 4-position of particle k at ordinal time λ′ . ( ) ( ),k j k js x xλ λ′≡ −  is the 

4-vector difference at the two times. /j ju dx dλ≡ and 2 2/j ja d x dλ= is the ‘ordinal 4-velocity’ and 

‘ordinal 4-acceleration’ of the trajectory j at time λ , and similarly for the primed quantities.  

 

2.2 Action 

Using the notation introduced above the traditional formulation of classical direct-action EM for a 
collection of charged particles with rest mass m is  

 ( )2 2
,

,

1
2 j k j k k j j j

j k j
j k

I e e d d u u s m d uλ λ δ λ

≠

′ ′= − −∑ ∑∫ ∫ ∫� (1) 

(see for example [7]). Self-action is excluded by excluding the diagonal terms j k= from the double 

sum. By contrast, in the uncompensated direct-action EM framework under consideration here, we 
admit electromagnetic self-action and deny additional mechanical action. That is, we consider the 
electrodynamics of completely uncompensated point charges formally possessing infinite 
electromagnetic mass and zero mechanical mass. Correspondingly, (1) is initially replaced with 
simply 

 ( )2
,

,
j k j k k j

j k
I e e d d u u sλ λ δ′ ′= −∑ ∫ ∫ � . (2) 

(The factor of ½ is no longer of any consequence and is omitted for convenience.) The contribution to 
the action at the point λ λ′= when j k= will be referred to as the local self-action. Because this 

contribution is singular, we immediately replace (2) with 

 ( ) ( ) ( )2 2 2 2 4 4
, ,

1 , ,
2

s

j k j k k j s j k j k k j
j k j k

I e e d d u u s e e d d u u s
σ

λ λ δ σ λ λ δ
=±

′ ′ ′ ′∆ = − + ∆ = − ∆ − ∆∑ ∑ ∑∫ ∫ ∫ ∫� �  (3) 

and assume that the physics of uncompensated direct action EM is formally described by the Euler 
equation for (3) in the limit that 0+∆ → . (Always it will be assumed that ∆ is positive.) That is, (3) is 

first extremized without regard to the magnitude of ∆ , and only subsequently does one let 0+∆ → .

This procedure retains the Lorentz invariance and parameterization-invariance of (1) and (2). 
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However, unlike (2), though like (1), the procedure is not scale invariant. There exist other plausible 
limiting procedures. 
 The form of (1) permits only sub-luminal speeds lest the mechanical action becomes 
imaginary. Since this restriction is absent in (3) both superluminal speeds and time-reversals are 

allowed. It follows that in (3) the assumption that ( ) ( )0t xλ λ≡ is a monotonic function amounts to 

the imposition of an external constraint on the motion. In general, in using (3) one cannot impose a 

relationship between the coordinate time ( )0x λ and the ordinal time λ without prior physical 

justification. (It is worth recalling that a superluminal trajectory without time-reversals with respect 
to some reference frame Σ, say, will acquire time reversals when viewed from some inertial frames 
that are moving sub-luminally with respect to Σ.) 
 As a result of the parameterization invariance the Euler equation is form invariant under a 
Lorentz transformation even if a parameterization is chosen such that λ is not a Lorentz scalar (e.g. 
λ is not the proper-time) and even though, in that case, u and a will not be Lorentz vectors and 

scalar products such as u a� and 2u u u≡ � will not be Lorentz scalars. In this paper will be 

considered only candidate solutions to the Euler equation that do not time-reverse when viewed from 
the laboratory frame, and it will be convenient to exploit the freedom of parameterization to choose 

tλ = .

The light cone condition 2
, 0k js = in (1) and (2) that picks out the times of electromagnetic 

interaction is replaced in (3) by the ‘modified light-cone’ condition 2 2
, 0k js ± ∆ = . Actually the double 

cone of co-dimension 1 in 3+1D is replaced with three disjoint surfaces each of co-dimension 1. In 
general this will give rise to interactions as illustrated in the 1+1 D cross section, Figure 1a. The 
interval s is time-like if j = k and the particle in question is always sub-luminal. Otherwise s can be 
time-like, space-like or null, in which case both signs of sσ need be retained. Note however that one 

or more of the interactions will disappear in the particular case that the distant interacting 
trajectory strikes the light-cone of the local particle at a tangent. This possibility is illustrated in 
Figure 1b for motion in 1+1D, and will turn out to be important in the subsequent analysis of 
superluminal dual circular motion in 2+1D.  
 

2.3 Euler equation 

Since there is no mechanical mass, variation of (3) gives simply that the particle moves to ensure 
that the total force is zero, 

 ( ) ( ) ( ), 0j j k j j
k

f e F uλ λ λ= =∑ � . (4) 

6 of 45

Friday , April  29, 2005

Elsevier



Rev
ie

w
 C

op
y

7

( )jf λ is a force 4-vector and ( ),k jF λ is the force tensor derived from the trajectories of all the 

particles, including the particle j k= . The derivation of F from the Euler equation involves a few 

departures from the traditional derivation from the Liénard-Wiechert potential, for example as given 
by Jackson [22]. The Euler equation for a general two-time action is derived in the appendix. 
Inserting into the result (A16) the particular expression for the direct-action kernel (A6), one 
obtains, l∀ ,

( )2 2
,

, 1
0

s

j k j k k j s
j k l l

de e d u u s
x d uσ

λ δ σ
λ=±

 ∂ ∂′ ′− + ∆ = ∂ ∂ 
∑ ∑ ∫ � . (5) 

It is to be understood that in the above we intend to take the limit 0+∆ →  after performing the 

integration. Carrying out the differentiations in (5) one has 

 ( ) ( )( ) ( )2 2
, , ,

1
2 0

s

j k k j k j j k k j k j s
k

e e d u u s u u s s
σ

λ δ σ
=±

′ ′ ′ ′− + ∆ =∑ ∑ ∫ � � , (6) 

and writing 

 ( ) ( ) ( )2 2 2 2
, ,

,

1
2k j s k j s

k k j

ds s
du s

δ σ δ σ
λ

′ + ∆ = + ∆
′′ �

(7) 

the Euler equation becomes 

 

( ) ( ) ( )

( )

, , 2 2
,

1 ,

, 2 2
,

1 ,

0

0

s

s

k j k j j k k j
j k k j s

k k k j

k k j
j k j k j s

k k k j

u u s u u s de e d s
u s d

u sde e d u s
d u s

σ

σ

λ δ σ
λ

λ δ σ
λ

=±

=±

′ ′−
′ + ∆ =

′ ′

′ ∧
′⇒ + ∆ =  ′ ′ 

∑ ∑ ∫

∑ ∑ ∫

� �
�

�
�

. (8) 

Performing the integration over λ′ , this is 

 ,

1 roots ,,

1 0
s

k k j
j k j

k k k jk k j

u sde e u
d u su sσ λ=±

′ ∧
=  ′ ′′  

∑ ∑ ∑ �
��

(9) 

where the roots are the ( )λ λ′ such that 2 2
, 0k j ss σ+ ∆ = (to be substituted into the kernel of the sum 

after the differentiation has been performed). Comparing with (4) one sees that the force tensor is 

 ( ) ,
,

1 roots ,,

1
s

k k j
k j k

k k jk k j

u sdF e
d u su sσ

λ
λ=±

′ ∧
=   ′ ′′  
∑ ∑ ��

. (10) 

Eq. (10) gives the generalization of the traditional EM force tensor derived from the Liénard-
Wiechert potential. Computing the derivatives, the 4-force on the jth particle is 

 
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

2
, , ,

3 21 roots , , , , ,

1
s

k k j k j k k k j k j k j
j j k

k k k j k k k j j k j k k k j j k j k

u s a u u a s u u s
f e e

u s u a s u s u u s u s aσ =±

 ′ ′ ′ ′ ′− +
 =  ′  ′ ′ ′ ′ ′+ + − 

∑ ∑ ∑
� � � �

� � � � �
. (11) 
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2.4 Uniform motion 

We first briefly consider a single particle executing uniform motion in space. Because there is only 
one particle the indexes j and k can be omitted. Since there are no coordinate time reversals we can 

exercise the parameterization invariance to choose the ordinary time: ( )0x λ λ= . Then ( )1,x λ= v ,

where v is the ordinary 3-vector velocity, and ( ) ( ), 1,k js λ λ′= − v . All second derivatives appearing 

in (11) are zero, and therefore 

 
( )

( ) ( )( )
2 2

2
2

3
1 st 0s ss

uf e u s u u u s
u sσ λ λ σ=± ′ + ∆ =

′
′ ′= −

′
∑ ∑ � �

�
. (12) 

The ∆ -modified light-cone condition is 

 ( ) ( )22 2 2 20 1 0s ss σ λ λ σ′+ ∆ = ⇒ − − + ∆ =v . (13) 

In the case that 1<v there are roots corresponding to 1sσ = − but not for 1sσ = + . The situation is 

reversed if 1>v . Since the force is a sum over both contributions, one can set 

 21λ λ′ − = ∆ − v . (14) 

Using this, the ratio in the sum in (12) is 

 ( )2 222

3 3 33 2

11

1
u

u s λ λ

−−′
= =

∆′ ′ − −

vv

v�
. (15) 

The term in parentheses in (12) is identically zero, and therefore, following the prescription of taking 
the limit 0+∆ →  after forming the Euler equation - the self-force is unambiguously zero. It is 

concluded that all uniform motions are valid solutions of the Euler equation.  

 It may be observed that if the delta function ( )2 2
,k jsδ − ∆ in (3) were absent only 

superluminal roots would exist. Formally this would mean that any sub-luminal motion of a single 
particle would solve the Euler equation (which is then already zero). Likewise, if the delta function 

( )2 2
,k jsδ + ∆ were absent, any superluminal motion of a single particle confined to a single space-time 

plane (i.e. in one space dimension) would generate no roots, and therefore would also formally be a 
solution of the Euler equation. It follows that both delta functions together ensure that arbitrary 
motions are not automatic solutions of the Euler equation. 
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3. Superluminal circular motion of two charges 

3.1 Specification of the motion 

We now explore as a possible solution of the Euler equation (4) two charges in circular motion, both 
moving with superluminal speeds with respect to the laboratory reference frame. Since the Euler 
equation is parameterization invariant and there are no time reversals of the superluminal motion 
when referred to the (static) laboratory frame it is again permissible and convenient to parameterize 
the trajectories with the laboratory time, tλ = . Again, the four-component vectors x, u, a, etc. are 

not Lorentz vectors and their scalar products are not Lorentz invariants. Accordingly we let 

{ }, 1,2j k∈ and 

 
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1, , 0,

1, , 0,
j j j j j j

k k k k k k

u u t t a a t t

u u t t a a t t

≡ = ≡ =

′ ′ ′ ′ ′ ′≡ = ≡ =

v a

v a
. (16) 

The modified light cone condition is 

 ( ) ( ){ }2 2
, , ,, 0 ; ,k j s l k j ss t t t t tσ σ′ ′ ′+ ∆ = ⇒ = ∆ (17) 

where (for each j, k) l enumerates the roots t′ . We restrict consideration to two particles in circular 

motion about a common origin. Based on symmetry grounds – that each particle must generate the 
force necessary to sustain the other in circular motion at all times – it is reasonable that the two 
particles must have the same speed and must be π radians out of phase in the laboratory frame. 

This configuration turns out to be sufficient for stability, though other possibilities are not ruled out 
here. Confining the motion to the 1 2, ,x x x y= plane and suppressing the 3x z= coordinate one has, 

for [ ]1,2j∈ ,

( ) ( ) ( )( ), cos , sinj j jx t t r t r tω φ ω φ= + +  (18) 

where here and throughout ω and r are fixed positive quantities, and 2 1φ φ π− = . With this the other 

4-vectors are 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

, , , cos cos , sin sin

1, sin , cos

0,cos ,sin

k j k j k j k j

j j j

j j j

s t t x t x t t t r t r t r t r t

u t t t

a t t t

ω φ ω φ ω φ ω φ

ω φ ω φ

ω ω φ ω φ

′ ′ ′ ′ ′= − = − + − + + − +

= − + +

= − + +

v v

v

(19) 

with ku′ and ka′ obtained simply by argument substitution. The modified light cone condition (17) is 

then 

 ( ) ( )( )( )2 2 2
, , , ,2 cos 1 0l k j l k j k j st t r t tω φ φ σ′ ′− + − + − − + ∆ = . (20) 

Observing that the phase difference is 0 or π, define 

9 of 45

Friday , April  29, 2005

Elsevier



Rev
ie

w
 C

op
y

10 

 , ,
1 if 2 1
1 if k j k j

k j
k j

σ δ
=

= − = 
− ≠

(21) 

and also define the dimensionless quantities 

 ( ), , , , , / 2l k j l k jt tθ ω ε ω′= − = ∆ (22) 

where ε is positive because ω and ∆ are positive. With (21) and (22), (20) can be written 

 ( )2 2 2
, , , , ,2 cos 1 4 0l k j k j l k j sθ σ θ σ ε+ − + =v . (23) 

Because (23) is even in θ, for fixed j,k the , ,l k jθ come in opposite signed pairs, making it convenient to 

employ a signed index l such that 
 , , , , , ,0,l k j l k j l k jθ θ θ−≥ = − . (24) 

This symmetry is the expected outcome of the configuration of the two charges: for every intersection 
on the future (retarded) light cone at relative phase θ there exists another intersection on the past 
(advanced) light cone from the same point at the relative phase -θ.

3.2 Forces on the particles 

 Since the light cone condition depends only on θ it is convenient to go to the rotating frame of 
the jth particle in whose frame the force is to be computed: 

 ( ) ( )
( ) ( )

1 0 0
0 cos sin

0 sin cos
j j

j j

x x t t x

t t
µ µ µω φ ω φ

ω φ ω φ

 
 
 → = + +
 
 − + + 

. (25) 

In this frame the quantities (18) and (19) are 

 

( )( )
( )

( )
( )

, , ,

, ,

,

1 , cos 1 , sin

1, sin , cos
0,cos ,sin

1,0,

k j k j k j

k k j k j

k k j

j

s

u

a

u

θ σ θ σ θ
ω

σ θ σ θ

σ ω θ θ

→ −

′ → −

′ → −

→

v v

v v

v

v

. (26) 

The scalar products appearing in the force, Eq. (11), are frame independent, and can be computed 
using either (26) or (18) and (19). Suppressing the indexes on θ one obtains 

 
( )

( )

2 2

2
, ,

2 2
, ,

2
, , ,

2
,

1
1 cos

1 cos
1 sin

sin

k

k k j k j

k j k k k j k j

j k j k k j k j

k j k j

u
a s

u u u a s

u s u s

a u

σ θ

σ θ

θ σ θ
ω
σ ω θ

′ = −

′ = −

′ ′ ′= + = −

′= = −

′ =

v
v

v

v

v

�

� �

� �

�

. (27) 
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Noting the equalities in (27) of some of the terms in (11), the force in the rotating frame is 

( ) ( ) ( )( ) ( ) ( ) ( )( )2
, , , ,

3
1 , ,s

k k j k j k j k j k k j k j k k k j k
j k j

l k k k j

u s a u u u s u s u u u u s a
f e e

u sσ =±

′ ′ ′ ′ ′ ′ ′ ′− + −
→

′
∑ ∑

� � � � � �

�
, (28) 

where the sum is over the roots l of θ as given by (23) and (24). As a consequence of the latter only 
terms that are even in θ survive the sum. Using (27) let us denote the parity of the scalar products in 
(28) by the subscripts o and e, corresponding respectively to odd and even: 

( ) ( ) ( )( ) ( ) ( ) ( )( )2
, , , ,

3
1 , ,s

k k j k j k j k j k k j k j k k k j ko o e o e o
j k j

l k k k j e

u s a u u u s u s u u u u s a
f e e

u sσ =±

′ ′ ′ ′ ′ ′ ′ ′− + −
=

′
∑ ∑

� � � � � �

�
. (29) 

Letting Ô and Ê extract the parts of their operands that are respectively odd and even in θ, it is 

deduced that (29) can be written 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )

3
1 0 ,

2
, , , ,

12

ˆˆ ˆ

s

j k j
l k k k j e

k k j k j k j k j k k j k j k k k j ko o e o e o

f e e
u s

u s a u u u E s u s u u O u u s E a

σ =± >
=

′

 ′ ′ ′ ′ ′ ′ ′ ′× − + − 
 

∑ ∑∑
�

� � � � � �

. (30) 

With reference to (27) it is seen that the 0th and 2nd (the time and x2-direction) components of the 
force are automatically zero, which is a predictable consequence of the symmetry of the 
configuration. This leaves only x1 component of the force to be resolved. Noting that 

 ( ) ( ) ( ) ( ) ( )
( )

22 2 2 2
, , , ,

2 4
,

sin sin 1 cos

2cos sin 1
k k j k j k j k j k j k j

k j

u s a u u u vθ σ θ σ θ σ θ

σ θ θ θ

′ ′ ′− = − − −

= + − −

v v

v v

� � �
 (31) 

and letting x̂ be a unit vector in the x1-direction, the total force on the jth particle is  

 

( )( ) ( )

( ) ( )
( )

2 4
, ,

2
2

, ,3 221 0 ,, 2
, ,

4 2 22

321 0 ,

2cos sin 1 cos
ˆ2

1 cos sin
sinsin

sin cos

1 cosˆ2

sin

s

s

k j k j

k j
j k j k j

l k k jk j
k j k j

k j

l k k j

e e

e e

σ

σ

σ θ θ θ σ θ
ω

σ θ σ θ
θ σ θθ σ θ

θ σ θ σ θ

ω

θ σ θ

=± >

=± >

 + − − −
 
  = − −  + −−     + −  

+ + +
=

−

∑ ∑∑

∑ ∑∑

v v v v
x

f v v
vv

v v

v v vv x

v

( )
( )

( ) ( )
( )

2 2 4 2
,

2
,

2 22 2 22 ,
32 2 2 21 0 , ,

2 1 cos

1 sin

1 1 cosˆ2

sin 1 sin sins

k j

k j

k jk j

l k k j k j

e e

σ

θ θ σ θ

σ θ θ

θ σ θω

θ σ θ σ θ θ θ=± >

 + − − −
 
  − + 
  + + − +   =  

−  − + − 

∑ ∑∑

v v

v

v vv x

v v v

 (32) 

(the time-component of the force – the power – is already zero). Restoring the indexes on θ one can 

write j j normf=f f� where jf� is the scalar 
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 ( )

( ) ( )
( )

2 22 2 2
, , , , ,

2 2 2
, , , , , , ,

1 2 321 0 , , , , ,

1 1 cos

1 sin sin
sgn

sins

l k j k j l k j

k j l k j l k j l k j
j

l k l k j k j l k j

f e e
σ

θ σ θ

σ θ θ θ

θ σ θ=± >

  + + − +    
 − + − =

−
∑ ∑∑

v v

v v

v
� (33) 

and where 

 2 2 ˆ2norm e ω≡f v x (34) 

is a fixed finite force independent of j, k and l.

3.3 Classification of forces 

A superluminally-moving particle may interact with itself by crossing its own light cone any number 
of times. The first such crossing is ‘local’ in that the associated time interval 0t t′ − →  as 0ε → .

Other light cone crossings wherein 0t t′ − ≠ at 0ε = will be referred to as ‘distant’. Whilst the local 

crossing necessarily connotes self-interaction, distant crossings may be either of ‘one’s own’ light 
cone, or of the light cone of another particle. In addition to these distinctions it is also important to 
distinguish between forces that are singular from those that are finite as 0ε +→ . It will be seen 

below that the local self-force is necessarily singular, whereas the distant self-force and distant force 
from other particles can be either finite or singular. It will turn out that there are different degrees 
of singularity, though it will be sufficient for the following discussion to distinguish simply between 
finite and singular forces. In summary then, a light-cone crossing connoting an electromagnetic 
interaction and giving rise to a force can be characterized by three qualities, each of which can take 

two values: { },strength finite singular∈ , { },proximity local distant∈ , and { }, -source self not self∈ .

We have already identified an intrinsic force that, in terms of this categorization scheme, has 

the quality vector ( ), ,singular local self . In accord with the labels introduced in section 3.1, for 

particle 1 the source self= quality gives that 1j k= = . If we label the roots of (23) with l increasing 

as one moves from local to distant, then the force in question will be associated with 1l = , and 

therefore with the angle 1,1,1θ . Taking into account that j k= and (24), and making the substitution 

1,1,1 2θ α= , one has that α satisfies  

 2 2 2 2
0

sin 0, 0, lim 0s ε
α α σ ε α α

+→
− + = > =v . (35) 

(Recall that the restriction to positive α is in accord with the derivation of (30) from (29).) In Figure 
1b the two points of interaction corresponding to both signs of α are shown as two red points close to 
the origin, the latter being the ‘present’ position of the particle. Since the particle is superluminal 
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(35) has real solutions only for positive sσ , as is apparent from the figure. With this, Eq. (33) gives 

that the local force on particle 1 is: 

 
( ) ( ) ( )2 22 2 2 2 2 2

32

1 4 1 cos2 1 2 sin2 sin 2

2 sin2
localf

α α α α α

α α

 + + − + − + − 
 =

−

v v v v

v
� (36) 

where there are now no sums and α has just one value satisfying, for fixed speed, 

 2 2 2 2
0

sin 0, 0, lim 0
ε

α α ε α α
+→

− + = > =v . (37) 

The subscript local will turn out to be sufficient to distinguish the force in future calculations. In the 
following section it is shown that this force can be identified with (-1 times) the mass-acceleration of 
Newton’s second law. Since it is singular, the associated mass is infinite, and one concludes that this 
force offers infinite resistance to the action of external forces. 
 In order to sustain circular orbits the charges must be subject to another force whose 

strength is singular. Traditionally a force having a quality vector other than ( ), ,singular local self is 

termed ‘external’. However, that designation will not be used here because such a force might 
mistakenly be interpreted as having a source that is necessarily not-self. By contrast here there 

exists the possibility that other forces (i.e. with qualities other than ( ), ,singular local self ) can be 

sourced either by self or by not-self, the former possibility arising because the charges are 
superluminal. The sought for additional singular force may even have multiple singular, distant 
contributions from either or both (self and not-self) particles. In this document however we will 
exclusively consider an arrangement wherein just one, other, singular force is sourced exclusively by 
the other, oppositely charged, particle. Such a force therefore has quality 

( ), ,singular distant not - self , which force, acting on particle 1, in accord with the labels introduced in 

section 3.1, has labels 1j = and 2k = . The label l for the associated angle is the particular unique 

index, l L= say, into the ordered set of roots that are the solutions of (23) for which the 

corresponding force is singular. Taking into account that j k≠ and (24), and making the substitution 

,2,1 2Lθ β= , one has that β satisfies  

 2 2 2 2cos 0, 0sβ β σ ε β− + = >v . (38) 

(Again, recall that the restriction to positive β is in accord with the derivation of (30) from (29).) 
Figure 1a shows the general case for arbitrary motion of a distant trajectory. The four blue points 
are the points of interaction between two distant trajectory segments and the present location 
(nominally of particle j) at the origin. However, in section 3.5 it is shown that the distant trajectory 
must strike the light cone of the local particle at a tangent. Figure 1b is a representation of this 
situation but where the motion is confined to 1+1D. With this additional constraint it is deduced that 
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(38) can have a real solution for just one value of sσ in the region of some intersection point. (There 

may be other intersection points involving the same trajectory.) Accordingly we can drop the sum 
over sσ from (33) so that the distant force on particle 1 from particle 2 is 

 ( )
( ) ( ) ( )2 22 2 2 2 2 2

1 2 32

1 4 1 cos2 1 2 sin2 sin 2
sgn

2 sin2
distantf e e

β β β β β

β β

 + − − + + + − 
 =

+

v v v v

v
� . (39) 

The subscript distant will turn out to be sufficient to identify this force in future calculations, though 

a full description is ( ), ,singular distant not - self .

Under the stated assumptions these two cases are an exhaustive catalogue of the singular 
forces. One also has, however, additional - finite - electromagnetic forces that are traditionally 
admitted in the classical and quantum analyses after subtraction of the electromagnetic mass. For 
the system under discussion it will become apparent that, unlike the case of singular forces, there 
are a variable number of contributions to the total finite force from both particles, these coming from 
multiple distant crossings of the light cone (see Figure 4). The variability considerably complicates 
an already lengthy analysis, and so this document will concern itself only with balance of the 
singular forces. This is not a big loss however, because (as will become clear) none of the quantities of 

interest – the angle β (at 0ε = ), the speed v , energy, and angular momentum – depend, to leading 

order, on the balance of the finite forces. 
 Since there is no mechanical mass the Euler equation (4) dictates that the sum of the 
electromagnetic forces on each particle must vanish. Considering just the singular forces (36) and 
(39) one therefore has simply 

 0local distantf f+ =� � . (40) 

Eqs. (35), (38) and (40) (with definitions (36), and (39)) are three equations in three unknowns 
2, ,α β v , to be solved as 0ε +→ . In sections 3.3 and 3.4 we solve these only to the degree required to 

permit i) identification of the local contribution to the electromagnetic mass to order 1/ε, and ii) 
identification of the condition that the distant force is singular to some degree. Determination of the 
latter condition is necessary but not sufficient to guarantee satisfaction of the Euler equation at the 
order 1/ε. However, its determination is sufficient to identify an important geometrical constraint 

leading to quantization of the orbit. More precise determination of the dependencies of 2, ,α β v on 

ε are necessary to prove satisfaction of the Euler equation up to but not including order ε0. They are 
also necessary in order to compute the total energy and angular momentum of the system. The 
relevant calculations are given in section 4. 
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3.4 Local force to order 1/ε

Eq. (35) permits the solution 0α +→ as 0ε +→ which is the local solution that gives rise to local 

self-action responsible for self-force and self-energy. Note that α is proportional to ε in approaching 

the limit. It is inferred from (35) and (38) that the speed is a function of ε . Writing 2 2
0 0ε =
≡v v  (35) 

gives 

 
2
0 1
εα =
−v

(41) 

plus higher-order terms in ε whose presence here is suppressed. The associated self-force is found by 
inserting (41) into (36). Since α is small, the trig terms need be expanded only to lowest order in α.
The numerator in (36) is even in α , but the 0th order – constant – term vanishes. One then has 

( ) ( ) ( )
( ) ( )

2 22 2 2 2 2 2 2 2 2
0

3 3 2 22 3 2 0 00

4 2 1 4 1 4 2 1 1 1
4 1 4 18 sin cos 8 1

localf
α α α α α

α εα α α α

+ + − + − −
→ → = =

− −− −

v v v v

v vv v
� . (42) 

 As expected the self-force is singular as 0 0ε + +→ ⇒ ∆ → , with ∆ setting the mass scale. In 

fact the correspondence with mechanical is mass is exact. To see this we restore the constant factor 

normf defined in (34), and note that the speed v therein is required only at the 0th order in α, to give 

the local force in the rotating frame: 

 
2 2 2

0 0
2 2
0 0

ˆ ˆ
2 1 1

local
e eω ω

ε
→ =

− ∆ −

v v
f x x

v v
. (43) 

Compare this with a plausible expression for the ordinary relativistic Newtonian mass-acceleration 

for a superluminal charge in circular motion at speed constant 0v , radian frequency ω, possessing 

mechanical mass 0m :

( )0 0 0 00
2 2 2
0 0 0

ˆ
1 1 1

m mmd t
dt

ω
= = −

− − −

v va x
v v v

. (44) 

Cast in the rotating frame of the particle, (44) is the negative of (43) provided one makes the 

association 2
0 /m e= ∆ . The sign difference is because the Newtonian Lorentz equation is 

0distantf ma− = whereas the Euler equation for the purely electromagnetic system is 

0distant localf f+ = . That is, if the distant force is considered as ‘applied’, a charge with only 

electromagnetic mass ‘responds’ with a reaction force whose negative is the traditional mass-
acceleration of Newton’s second law. It is concluded that ∆ here plays the role of the classical radius 
of the charge, which, as it tends to zero, causes the electromagnetic mass to tend to infinity. The self-
force due to self-action replaces (-1 times) the traditional ‘force of inertia’. 
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3.5 The Cerenkov cone condition 

Given that the local-force is singular at order 1 /ε , for the total force to vanish it is necessary that 
there exist another – canceling - contribution at this order. For some relative phase β solving (38) 

the distant force coming from the other particle must be singular at order 1 /ε with the correct 
magnitude to exactly cancel the self-force. Clearly, if it exists, that value of β must cause the 

denominator in (39) to vanish as 0ε +→ , though, as discussed above, this is a necessary but not 

sufficient condition to guarantee cancellation of forces at order 1 /ε . Let 0 0εβ β =≡ denote the value 

of β in the limit that 0 0 0ε α+ + +→ ⇒ ∆ → ⇒ = . Then for the denominator in (39) to vanish 

requires 

 2
0 0 0 0sin cos 0β β β+ =v . (45) 

To this order (38) gives 

 2 2 2
0 0 0cos 0β β− =v . (46) 

 

Together these give that the speed is 

 0 0cosec β=v (47) 

where 0β is a solution of 

 0 0 0tan 1, 0β β β= − > . (48) 

( 0 0β > is required by (24)). The first few solutions are given in Table 1. The smallest (n = 1) 

admissible value for 0β is 2.798, which corresponds to 320.6o of orbital motion. Figures 2a and 2b 

illustrate the balance of forces supporting circular motion for this particular mode. In the limit of 
large speeds the phase and speed approach  

 0 0, nβ π→v (49) 

where n is a positive integer. It will be useful for later to express 0β in terms of 0v . Writing (46) as 

 ( )2 2 2
0 0 01 sinβ β= −v (50) 

and using (47), one obtains 

 2 2
0 0 1β = −v (51) 

from which it is inferred that the speed must satisfy 

 2 2
0 01 tan 1 1− − = −v v . (52) 

 Every admissible solution of (48) causes the denominator in (39) to vanish to 0th order in ε.
By virtue of (47) each of these corresponds to a particular orbital speed for both particles. One should 
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be clear though that the complete set of possibilities corresponds to a single value for the index l in 
(24). Other values of l, if they exist, would correspond to a different intersection by particle 2 of the 

forward light cone of particle 1 for the same parameters r, ω, and 0v .

Eq. (46) selects the relative phase 0β for some fixed speed 0v at which there is 

electromagnetic contact between the two particles. That is, (46) determines the times at which one 
particle is on the light cone of the other. For any laboratory time t of particle 1, there will always be 
at least two times (two values for t’ in (20)) at which particle 2 is in electromagnetic contact. 
Independent of the specifics of the motion, at 0∆ = the light-cone condition (17) is 

 ( ) ( )2 1t t t t± ±′ ′= ± −x x . (53) 

which gives rise to (37) and (38) in the particular case of circular motion considered here. It will be 
helpful to regard the coordinate t of particle 1 as the fixed present time, and identify with t±′ the two 

times that are the future and past (relative to t) times that particle 2 is in electromagnetic contact. 
 Whereas (37) and (38) and therefore Eq. (53) decides the timing of the electromagnetic 
interaction, Eq. (45) imposes a constraint on the motion, valid only at that time. Independent of the 
specifics of the motion and with reference to the denominator of (11), (45) corresponds to the 
condition 
 2 2,1 0u s′ =� (54) 

which, in 3+1D form, is 

 ( ) ( )( )2 2 1t t t t± ±′ ′− = −v . x x . (55) 

This is the condition that the distant force from particle 2 on particle 1 is singular. As discussed in 
section 3.4, it is a necessary but not sufficient condition in order that an uncompensated charge 
deviates from straight-line motion. In the particular case of circular motion discussed above, it has 
been arranged that the denominator of the distant force vanish, and therefore (54) hold, at both 
times t±′ , symmetrically distributed either side of t. Let us define two unit vectors, each connecting 

the two particles at the two times of EM contact, 

 ( ) ( )
( ) ( )

2 1

2 1
ˆ t t

t t
±

±
±

′ −
≡

′ −

x x
n

x x
, (56) 

and let ( )2 t± ±′≡v v . Then (53) combined with (55) give 

 ˆ ˆ1, 1+ + − −= = −v .n v .n , (57) 

which gives that particle 2 is moving away from particle 1 at the speed of light at the future time, i.e. 
as particle 2 crosses the retarded light cone of particle 1, and particle 2 is moving towards particle 1 
at the speed of light at the historical time, i.e. as particle 2 crosses the advanced light cone of particle 
1. These conditions will be referred to collectively as the Cerenkov cone condition. In the space-time 
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diagram the conditions (57) mean that particle 2 intersects the (double) light cone of particle 1 at a 
tangent. Figure 1b illustrates this possibility in 1+1 D. Figures 2a and 2b show how the balance of 
forces supports circular motion. Figure 3 shows a rendering of the actual motion in 2+1 for the modes 
n = 1 and n = 2. Figure 4 shows a rendering for n = 1 superimposed upon the light-cone of one of the 
particles. 
 

4. Higher order terms in the Euler equation 

4.1 Motivation 

The calculation of the distant force culminating in (47) and (48) enforces the Cerenkov cone condition 
discussed in section 3.7. Yet although they guarantee that the distant force is singular, Eqs. (47) and 
(48) are not sufficient to guarantee that the distant force cancels the self force, for which it is 
necessary to expand to higher orders. In the particular case of circular motion, it will turn out that 
higher order corrections will play no direct role in determination of the allowed motion; once the 
speed have been chosen in accord with (47) and (48) one has in hand a full description of the motion 
of both particles subject to the prior constraint of concentric circular motion. That is, the outcome of 
this calculation can have no impact on the speed and relative phase (at the time of EM contact) in 
the limit 0∆ = . Nonetheless, it is important to show that it is mathematically feasible to completely 

cancel the self-force with the local force, without, say, introducing imaginary quantities. Also, it will 
turn out that the higher order terms computed below will be required to compute the energy and 
angular momentum of the system. 
 

4.2 Series solution of the light-cone conditions 

We require the simultaneous solution of Eqs. (37), (38) and (40) (with definitions (36), and (39)) for 

the three unknowns 2, ,α β v , as 0ε +→ . Noting that Eq. (42) gives 1localf ε∼ , it follows, in order for 

the total force vanish, that the denominator of the distant force (39) must be proportional to ε (unless 
perhaps the numerator vanishes at 0ε = , which will be seen not to be the case). From the form of 

the denominator, 
32 sin cosβ β β+ v , it is deduced that 1 / 3δβ ε∼ at the lowest order and therefore 

that the quantities 2, ,α β v can be expanded as a series in 1 / 3ε . Therefore let us define 1 / 3ρ ε=

(there is just one real root) and write 

 
0 0

,n n
n n

n n
α α ρ β β ρ

= =
= =∑ ∑ (58) 

where n is an integer and the coefficients are constants. It will be convenient to re-write the modified 

light-cone conditions (37) and (38) using 1 / 3ρ ε= as 
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 ( ) ( )2 6 2 2 6 2cos sin 0sα ρ β β σ ρ α+ − + = , (59) 

and 

 
2 6

2
2sin

α ρ
α

+=v . (60) 

The problem may now be stated as the determination of the coefficients , ,n n nα β γ from the 

simultaneous equations (58), (59) and (60), and (40) (using (36) and (39)).  

 First we solve for the { }iα in terms of the { }iβ . Substitution of (58) into (59) and collecting 

terms, one obtains at 0th order 

 2 2 2 2
0 0 0 0cos sin 0α β β α− = . (61) 

Since it has been already deduced that 0β satisfies (48), plus that 0α +→ as , 0ρ ε +→ , it follows 

that the above requires that 0 0α = , as expected. At the 1st order the coefficient of ρ in (59) gives 

 ( )2 2 2 2
0 1 0 0 0 1 0 0 1 0 0 0 1 02 cos sin 2 cos 2 cos sin 2 sin 0α β β β α α β β α α α β β α ρ− + − − = (62) 

which is clearly already satisfied at 0 0α = . One proceeds likewise, setting the coefficient of each 

term in the power series for ρ to zero. One can use (48) to replace all appearances of the trig terms 
with irrational functions of 0β :

0
0 02 2

0 0

1cos , sin
1 1
β

β β
β β

= = −
+ +

. (63) 

One eventually obtains 

 

( ) ( ) ( )

( ) ( ) ( )( ) ( )

2 2 2 2
1 0 1 0 1 0 23 5 6

3 4
0 0 0

2 4 2 2 2
0 1 0 0 1 1 2 0 3 0 2 7 8

5
0

1 1 31
2 3

1 1 24 12
24

O

β β β β β β β
α ρ ρ ρ

β β β

β β β β β β β β β β β
ρ ρ

β

+ + −
= − +

+ + + − −
+ +

. (64) 

Using (64) one can now express 2v as given by (60) in terms of the { }iβ . Expanding and collecting 

terms one finds 

 
( ) ( ) ( )

( ) ( ) ( )( ) ( )

2 2
1 0 0 2 12 2 2 2 2 3

0 1 0
0

2 4 2 2 2
0 1 0 0 1 0 3 1 2 0 2 4 5

2
0

2 1 3
1 1

3

1 2 1 6 3
3

O

β β β β β
β β β ρ ρ

β

β β β β β β β β β β β
ρ ρ

β

+ −
= + + + +

+ + + − +
+ +

v
. (65) 
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4.3 Series solution of the Euler equation 

Using (64) and (65), and the expansion (58) for β, it is now possible to express the forces entirely in 

terms of the { }iβ . A series expansion of the Euler equation (40) in ρ will then fix the { } , 0i iβ > in 

terms of 0β . One finds for the local force, (36), that 

 ( ) ( )
2

2 01
03 2

0 0

1 1 1
4 2localf Oββ ρ
β ρ β ρ

 
= − + +  

 
� . (66) 

Putting (64) and (65) and the expansion (58) for β into the expression for the distant force (39) gives 

 ( ) ( )
2 4 2 2 2 2

01 0 2 1 0 1 2 0 1 3 0 21 2
3 2 2 22 3

0 1 0 10 1

3 2 2 3 6sgn( ) 1
4 1distant

e ef Oβ β β β β β β β β β β β
ρ

ρ β β ρ β β ρβ β

 − − − += + + +  +  
� . (67) 

It may be observed that sσ does not appear in either of the above forces. This is because α is non-

zero only at the third order, so that terms involving sσ first appear in the expansion of (59) at the 

12th order, which is too high to contribute to the singular components of the force. 
 The total force must be set to zero by solving (40) using (66) and (67) by setting the coefficient 
to zero of each of the Taylor-Laurent series terms in ρ up to and including the term at order ρ0. From 

(66) and (67) the dominant term at order 3ρ− gives 

 ( )
1 2

2 3
00 1

sgn( ) 1 0
1

e e
ββ β

+ =
+

. (68) 

One sees immediately that 1 2sgn( ) 1e e = − , i.e. the two charges are of opposite sign – as expected. 

Given that this is the case, one then has 

 
1 / 3

0
1 1 2

01β
β

β σ
β

 
=   + 

(69) 

where 1βσ can be either of 1± . Proceeding likewise for each term of the Taylor-Laurent series, one 

eventually obtains 

 ( )
1 / 3 2 / 3

2 30 0
0 1 2 2

00 0

1
31 1

Oβ
β β

β β σ ρ ρ ρ
ββ β

   
= + + +      + +   

. (70) 

The iβ implied in the above (i.e. as defined in (58)) can now be substituted into (64) and (65) so that 

α and 2v can now be regarded as functions of ρ and 0β . However, it is preferred here to use (51) to 

express everything in terms of 2
0v (the square of the speed in the limit that 0ρ = ), since this is 

perhaps more readily regarded as an observable property of the two-particle system. In that case the 
series (64) for α becomes 
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( ) ( )

( )
2 / 3 23

0 5 7 90
7 / 6 11 / 62 / 32 2 2

0 0 0 0

9 28
1 2 1 72 1

Oρα ρ ρ ρ
+= − − +

− − −

v v
v v v v

 (71) 

the first term of which is in agreement with (41).  The series for β is 

 ( )
( )

( )
1 / 62

02 2 3
0 1 2 / 3 1 / 64 / 3 2

0 0 0

1 11
3 1

Oββ σ ρ ρ ρ
−

= − + + +
−

v
v

v v v
 (72) 

and the series (65) becomes 

 ( )
( )

( )
21 / 32 / 32 2 2 2 4 60

0 0 0 1 / 32 / 3 2
0 0

9 71
9 1

Oρ ρ ρ
+= + − + +
−

vv v v v
v v

. (73) 

We can now investigate how each of the terms in the expansion of either the local or the distant force 
depends on the speed (because the sum is zero, one is just the negative of the other). Examination of 

(66) and (67) immediately reveals that the coefficient of 2ρ− must be zero because a term of that 

order appears in only one of the two forces. There remains only 

 
( )

( )
2 / 3

0 0
3 7 / 62 2

0 0

1 1 1
4 1 8 1

local distf f O ρ
ρρ

= − = − +
− −

v

v v
� � . (74) 

To restore the units to the forces we recall ( )1 / 31 / 3 / 2ρ ε ω= = ∆ and note also that the normalizing 

force (34) is itself a function of ρ via v , an expansion for which can be obtained from (73): 

 

( )

( ) ( )

1 / 32
2 2 2 2 2 40

0
0

1 / 32 2 2
02 2 4 / 3

0
0

11ˆ ˆ2 2
2

1
ˆ2

32

norm e e O

e O

ω ω ρ ρ

ω
ω

  − ≡ = + +     
  ∆ −  = + + ∆     

vf x v x v
v

v
x v

v

. (75) 

Multiplying (74) by (75) gives 

 
( )

( )
2 2 5 / 3

0 0
7 / 61 / 32 5 / 3 1 / 3 2

0 0 0

ˆ ˆ
1 2 1

local dist
e e O
ω ω= − = − + ∆

∆ − ∆ −

v x xf f
v v v

. (76) 

(In fact there are no contributions in (76) to the force at order 0∆ arising from the foregoing analysis; 

the first non-singular contribution turns out to be at order 1 / 3∆ . There are, however, contributions at 

( )0O ∆ from the finite interactions ignored in this analysis, as discussed above.) As required, the 

first term is in agreement with (43). Though weaker than the first, the second term is also singular, 
and therefore likewise requires nullification from balance of local and distance forces. 
 There were no problems encountered in the above in assigning real values to the expansion 
coefficients in the series (58) in order that the singular parts of the total force vanish. This confirms 
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that the circular motion of the two charges (18) does indeed satisfy the singular parts of the Euler 
equations for the action (3) in the limit that 0∆ = - provided the speed is a solution of (52). The non-

singular parts, in particular the total force at ( )0O ∆ can similarly be nullified through appropriate 

choice of the coefficients of the higher order terms on the expansions (58). As discussed above, this is 
not demonstrated here because of space limitations and also because it has no bearing on the 
quantities of interest. The main point, that the charges interact to produce non-trivial motions – 
despite the infinite electromagnetic masses, is sufficiently demonstrated by resolving just the 
singular parts of the force. 
 

5. Energy and Angular Momentum 

5.1 Energy of pair in circular motion 

In this section the local and then the distant contributions to the energy are first computed 
separately. The total energy is then given as the sum. In the case that the motion is given by (18) 
and the scalar products are (27), the energy is 

( ) ( ) ( )
( ) ( )

( )( ) ( )( )

22 2 2
, , ,

3 22 2 2 2 2 2, , , , ,

4 2 2 2 2
,32, 0 ,

2 sin 2 sin 1 cos1
2 sin sin sin 1 cos

2sin sin cos 2 sin
sin

k j k j k jj k

j k roots k j k j k j k j

j k
k j

j k roots k j

e e
H

e e

θ σ θ θ σ θ σ θ θω

θ σ θ θ θ σ θ σ θ θ σ θ

ω
θ θ θ θ θ σ θ θ θ θ

θ σ θ>

 − − − − =  
−  − − + − 

= + − − + +
−

∑ ∑

∑ ∑

v v v

v v v v

v v
v

. (77) 

The sum over sσ has been dropped because, as discussed above, both the local and distant 

interactions can simultaneously satisfy the modified light-cone condition and the Cerenkov cone 
condition for just one of the two values. The roots are now given by (23). The angle brackets have 
been be omitted because nothing inside depends on t. Noting that the whole expression is even in θ,

and that (23) is even in θ and therefore the roots come in opposite signed pairs, the sum over roots 
generates a factor of 2, and it is understood that in the second expression above one now uses just 
the positive root of (23). 
 In accord with the discussion of section 3.4 we distinguish between energy arising from local 
self-action and any other energy arising from the action of the ‘distant’ force: 
 local distH H H= + . (78) 

The local energy is characterized by j k= and 0θ +→ as 0+∆ → . Using 2θ α= and that there are 

two particles having local contributions from the pairs ( ) ( ), 1,1j k = and ( ) ( ), 2,2j k = , (77) becomes 

( )( ) ( )( )
2

4 2 2 2 2
32

4 2 sin 2 sin 2 2 cos2 2 2 1 sin2 2
2 sin2

local
eH ω α α α α α α α α α

α α
= + − − + +

−
v v

v
(79) 
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where α is the solution of (37). Using now the expansion (71) for α and (73) for 2v , after some 

algebra one finds 

 
( )

( )
( )

( )
2 / 3 2 / 32 2 2 / 32 2

0 00 0
7 / 6 7 / 63 2 22 2 / 3 1 / 3 2

0 00 0

2
1 12 1 2 1

local
e ee eH O O
ω ωω ρ

ρ ρ
= + + = + + ∆

− ∆ −− ∆ −

v v

v vv v
. (80) 

Just as for the force, the term at order 0∆ comes from finite interactions ignored in the foregoing 
analysis. The first term is just that expected from a pair of particles each of (electromagnetic) rest-

mass 2 /e ∆ , provided one accepts the generalization, already implied in (80), of the traditional γ

factor to the superluminal domain. 
 Taking into account the exchange symmetry between the two particles, the interaction 
energy is two times that of just one of them. Using 2θ β= and that there are two oppositely-charged 

particles corresponding to the pairs ( ) ( ), 1,2j k = and ( ) ( ), 2,1j k = , both pairs assumed to contribute 

equally, (77) becomes 

( )( ) ( )( )
2

4 2 2 2 2
32

4 2 sin2 sin 2 2 cos2 2 2 1 sin2 2
2 sin 2

dist
eH ω β β β β β β β β β

β β
= − + − + + +

+
v v

v
(81) 

where β is the solution of (38). Using now the expansion (72) for β and (73) for 2v , one obtains 

( )
( )

( ) ( )
( )

( )
2 / 3 2 / 32 2 1 / 3 2 2 / 3 22 2 2 20 0 0 00 00 0

7 / 6 7 / 63 2 22 1 / 3 2
0 00 0

3 2 32
1 13 1 3 1

dist

e ee eH O O
ω ωω

ρ
ρ ρ

− −
= − − + = − − + ∆

− ∆ −− ∆ −

v v v vv v
v vv v

. (82) 

The interaction energy is negative, as it should be.  
 Adding (80) and (82), the total energy is 

 
( )

( )
2 / 32 2 / 32 2

00 0
1 / 62 / 3 1 / 3 2

0

2 1

2 1

ee
H O

ω−
= − − + ∆

∆ ∆ −

vv

v
. (83) 

The total energy of the system is negative, confirming that the orbits are binding. The energy is not 

bounded from below; increasing the speed makes the energy more negative. Since 2
0v must obey (52), 

the energy is quantized. Table 2 gives the spectrum for the first few quantum numbers. At high 
quantum numbers (49) gives that the energy approaches 

 22H e nπ→ − ∆ , (84) 

where n is a positive integer. 

 Denoting the equivalent rest mass of each particle by 2 /m e= ∆ it may be noticed that to 

first order in the mass (83) appears to be a superluminal generalization of the relativistic Virial 
Theorem [23] 
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 21j j
j

H m= −∑ v . (85) 

However, a formal relation between the two has not been established here; that would require 
demonstration of (83) independent of the details of the motion.  
 In this purely electromagnetic theory the coefficient of the action (3) is entirely arbitrary. A 
coefficient proportional to ∆ , say, would in effect be a form of renormalization, which would leave 
the energy (83) finite and the angular momentum (96) zero. In any case, the absolute values of the 
energy and angular momentum must be regarded as arbitrary. Of course, the fact of their 
quantization is unaffected by this arbitrariness, since the excited states can be expressed as 
dimensionless ratios relative to the ground state. For example, upon introducing an extra subscript 

to denote the quantum number, so that, for example, the nth solution to (52) is labeled 2
0,nv , then (83) 

gives 

 
2
0,
2 20 large 0 0,0 0,0

1lim 1.301
1 1

nn
n

H n n
H

π
+∆→

−
= → ≈

− −

v
v v

(86) 

where we used 0,0 2.614≈v .

5.2 Angular momentum of pair in circular motion 

In this section the local and then the distant contributions to the angular momentum are first 
computed separately. The total angular momentum is then given as the sum. First we simplify the 
third term in large parentheses in (A77) using the scalar products for the dual circular motion (27): 

 

( ) ( )( ) ( ) ( ) ( )

( ) ( )

( ) ( )( )( )

2
, ,

22 2 2 2
, , , ,

2
2 2

,

1 sin 1 cos sin 1 cos

sin cos 1 sin cos

k k j k j k j k k k j k j

k j k j k j k j

k j

u s u u t t a u t t u a s u u

θ θθ σ θ σ θ σ ω θ σ θ
ω ω ω

θ θ θ σ θ θ θ θ
ω

′ ′ ′ ′ ′ ′ ′ ′+ − − − +

 = − − + − − 
 

= − + − +

v v v v

v v

� � � � �

. (87) 

From the definitions (18) and (19) the vector cross products are: 

 

( )( )
( )( )

( )( )

( )( )

2 2

,2 2

2 2
,

2 2

,

2 2

,

ˆ ˆsin sin

ˆ ˆsin sin

ˆ ˆcos cos

ˆ ˆcos cos

k j k j k j

k j k j k j

k j k j k j

k j k j k j

t t

t t

t t

t t

ω φ φ σ θ
ω ω

ω φ φ σ θ

ω φ φ σ θ
ω ω

ω φ φ σ θ
ω ω

′ ′× = − − + − = −

′ ′× = − − + − = −

′ ′× = − + − =

′ ′× = − − + − = −

v vx x z z

v v zv zv

v vx v z z

v vv x z z

. (88) 

Then the first vector expression in (A77) is 
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( )( )( )

( )

2 2
2

, , ,

2

,

ˆ ˆ ˆcos cos sin

ˆ 2cos sin

j k k k j k j k j k j

k j

t t θσ θ σ θ σ θ
ω ω ω

σ θ θ θ
ω

′ ′ ′ ′× + + − × = + −

= −

v vx v x v v z z zv

vz
. (89) 

Putting (87)-(89) in (A77) one obtains the angular momentum specific to the dual circular motion 

( ) ( )
( ) ( )

( ) ( )( )( )

22
,

2
, 2 2

, ,32, , 2 2 2
,

4 2
2

, 2 2 2
,32

,
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ˆ
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ˆ
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j k k j
k j k j
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e e

θ σ θ θ θ θ
σ

θ σ θ σ θ θ θ
θ σ θ
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θ θ
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θ σ θ
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 
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 −
 − − + − +
 
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∑ ∑

v
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v
z v

v
v

( )
( )

, 0
2

in cos

cos sin
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θ θ

θ θ θ θ
>

 
 
 
 
 + − 

∑ ∑

. (90) 

In accord with previous discussions the sum over sσ has been dropped. The angle brackets have 

been be omitted because nothing inside depends on t. Given that the whole expression is even in θ
and that (23) is even in θ – and therefore the roots come in opposite signed pairs – the sum over roots 
has been replaced with a factor of 2 and the positive root of (23) has been stipulated. 
 Proceeding as for the energy let  
 local dist= +L L L  (91) 

where the local contribution is characterized by j k= and 0θ +→ as 0+∆ → . Using 2θ α= and that 

there are two particles corresponding to the pairs ( ) ( ), 1,1j k = and ( ) ( ), 2,2j k = , (90) becomes 

 ( )
( )

4 2 2 2 22 2

3 22

sin 2 cos2 sin 2 4 8sin2 cos22ˆ
4 cos2 2 sin22 sin2

local
e α α α α α α

α α α αα α

 + + −
 = −
 + −−  

v vvL z
v

(92) 

where α is the solution of (37). Using now the expansion (71) for α and (73) for 2v , this is 

 

( )
( )

( )

( )
( )

( )

2 / 3 22 0 02 00
7 / 63 2 2

0 0

2 / 3 22 0 02 00
7 / 62 2 / 3 1 / 3 1 / 3 2
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ˆ

1 2 1

22ˆ
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local e O

e O

ρ
ρ ρ

ω ω

 − = + + − − 
 − = + + ∆ ∆ − ∆ − 

v vvL z
v v

v vvz
v v

. (93) 

 In computing the distant contribution to the angular momentum we use 2θ β= and that 

there are two oppositely-charged particles corresponding to the pairs ( ) ( ), 1,2j k = and ( ) ( ), 2,1j k = ,

and that both pairs contribute equally. Eq. (90) then gives 

 ( ) ( )( )
2 2

4 2 2 2 2 2
32

2ˆ sin 2 cos2 sin 2 4 4 cos2 2 sin2
2 sin2

dist
e β β β β β β β β

β β
= + + + +

+

vL z v v
v

(94) 
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where β is the solution of (38) . Using now the expansion (72) for β and (73) for 2v this is 

 
( )

( )

( )
( )

2 2 2 8 / 3
00 0

7 / 63 2 2
0 0

2 2 2 8 / 3
00 0

7 / 62 2 / 3 1 / 3 1 / 3 2
0 0

ˆ ˆ
1 2 1

ˆ ˆ2
1 2 1

dist
e e O

e e O

ρ
ρ ρ

ω ω

= − + +
− −

= − + + ∆
∆ − ∆ −

z v z vL
v v

z v z v
v v

. (95) 

 Comparing (93) and (95) one sees that the leading order parts of the angular momentum 
cancel, with the result that the total momentum is singular only to order 1 / ρ :

( )
( )

( )
( )

2 2 / 3 1 / 3 2 2 / 3
0 00 0

1 / 6 1 / 62 1 / 3 1 / 3 2
0 0

2ˆ ˆ
1 1

e eO Oρ
ρ ω

= + = + ∆
− ∆ −

v vL z z
v v

. (96) 

The angular momentum is quantized by virtue of (52). At high quantum numbers, (49) gives that the 
magnitude of the angular momentum approaches 

 
1 / 3

2 2ne π
ω

 →  ∆ 
L (97) 

where n is a positive integer. 
 

6. Discussion 

6.1 Cerenkov Radiation 

The advantage of the direct-action analysis is that without additional matter there can be no 
radiation from the circular orbits, i.e., even though there is acceleration. That is, the analysis above 
is exact for a 2-particle universe. This is in contrast to the Maxwell theory in which there will be 
(retarded) radiation due to the acceleration of the sources. With this caveat it was stated in the 
introduction that the technique of non-compensation, and in particular the analysis of the dual 
circular motion, could also be performed in a Maxwell framework because the theories are otherwise 
the same.  
 There is an additional reason, however, for preferring the direct-action theory that was not 
mentioned in the introduction. It is widely held that uniformly moving charges at v > c will radiate 
into a vacuum. Such radiation was predicted by Sommerfeld [24] in 1904. There were no known 
physical manifestations, and presumably were not expected to be any - at least not due to ordinary 
electrons whose speed could not exceed c - until 1934 when Cerenkov and Vavilov observed 
luminescence produced by relativistic electrons passing though a medium. The phenomenon was 
explained in 1958 by Cerenkov, Tamm and Frank [25] as an instance of the effect predicted by 
Sommerfeld, but where the condition for radiation was reformulated as the requirement that the 
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charged particle move faster than the speed of light in the local material. See [26] for a supporting 
calculation. Wimmel & Jones [27,28] later re-analyzed the production of Cerenkov radiation, 
replacing Sommerfeld’s model of a rigid finite-sized electron (introduced to provide a cutoff for the 
radiation) with a relativistically-correct variable form, to achieve a finite relativistically-invariant 
expression for the power loss. But there were features of the result that led Wimmel to conclude that 
something was wrong with the whole approach. There is a detailed discussion of this issue and a 
suggested solution in the recent book by Fayngold [29].  
 However, there are some - for example [30-32] - who hold that Sommerfeld’s original analysis 
applies only to electrons moving through a dense medium, and does not apply to motion in a vacuum. 
In particular, Recami and Mignani [30] make an extended (v c> ) Lorentz transformation [33] of the 

behavior of ordinary charged tardyons to deduce that Cerenkov radiation from charged tachyons 
appears only if traveling with speed less than that of light in a medium, i.e. when /c n v c> > . (The 

refractive index n is less than 1 in tachyonic material.)  
 An additional advantage, therefore, of adopting the direct action over the Maxwell theory is 
that it avoids having to take sides on this contested issue. Just as for ordinary ‘acceleration 
radiation’, in the direct-action theory there can be no Cerenkov radiation of energy without the 
presence of additional absorbers, regardless of which position on the issue is correct. 
 

6.2 Real versus imaginary mass 

Commonly it assumed that superluminal speeds connote an imaginary value for the mass in order 

that the classical mechanical action 2
mechI m dx= − ∫ remains real [29]. A consequence is that one is 

forced to regard tardyonic (v c< ) and tachyonic (v c> ) charged matter as different species, each 

making their own distinct contribution to the action: 

 
*

2 * 2

1 1

N N

mech i i i i
i i

I m dx m dx
= =

= − − −∑ ∑∫ ∫  (98) 

where m and m* are tardyon and tachyon masses respectively. This is consistent with the 
Himalayan analogy deployed by Sudarshan in defense of tachyons [34]. By contrast it may be 
inferred from the analysis above that a mass of purely electromagnetic origin contributes an action  

 
2

2
self i

eI dx= −
∆ ∫ (99) 

valid therefore for all speeds. Of course there is nothing in the above to suggest the possibility of 
different masses, or even of the emergence of a finite mass scale; these are separate issues that 
require treatment elsewhere. The important point here is that a single action now covers the full 
domain of speeds, with no mention necessary of imaginary mass. 
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 It appears that in uncompensated EM a single species of charge has the capacity to move 
with speeds both less than and greater than light. It should be pointed out though that the 
possibility of null motion is not covered by this conclusion and has yet to be investigated. Initially it 
might appear that such a possibility is excluded because one always expects a self-force of the form 
(43), and therefore an infinite contribution from the gamma factor as v c→ . But a more careful 

analysis shows that if v c= is stipulated at the outset, a different Taylor-Laurent series expansion in 

ρ of the local force exists, i.e., having finite coefficients, and therefore could potentially be cancelled 
by a distant force of the same order. Only if v = c is permitted is there a possibility of a single charge 
(an unbroken world line) exploring both regimes. 
 

6.3 Non-locality 

It is clear from (10) and (11) that , 0k k ju s′ =� with 2
, 0k js = is the Lorentz-invariant condition that 

there exists a singular force between particles (more exactly, events) k and j. If the speed of both 
particles is less than c then this condition is satisfied only at k j=x x I.E., when the two particles are 

coincident, in which case the singular force is the Coulomb force at zero separation. For the purposes 

of computing singular forces, therefore, , 0k k ju s′ =� with 2
, 0k js = is the Lorentz-Invariant 

generalization of the zero separation condition, from which it follows that a superluminal charge 
should be regarded (for these purposes) as an extended object. More specifically, for each 4-point, 

( )z λ say, on the world line, a source is ‘effectively’ extended throughout the surface whose points 

( ){ }x λ simultaneously satisfy the two equations 

 ( ) ( )2 0, 0dzz x z x
dλ

− = − =� . (100) 

For a single value of λ the surface ( ){ }x λ has co-dimension 2 (i.e. a 2-surface in 3+1D), so that the 1 

dimensional world-line generates an extended source of co-dimension 1 (a 3-volume in 3+1D). This 
extension is in space-time, not in space alone. For example, a uniformly moving source with speed 
v c> generates a (double) Cerenkov cone – originating from each point of the world line - whose 

angle θ between the surface and the axis of symmetry satisfies cosv cθ = . This double cone exists for 

all time, and therefore has 3 dimensions in 3+1. The additional constraint that the ‘extended source’ 
lie on the (double) light cone then selects a moving cross-section through the double cone that is a 
pair of expanding circles of radius sintρ θ= running away from the source-point at speed c, i.e. with 

r t= ± . A pair of expanding circles is generated by every point indexed by λ on the world line; they 

are the effective extension of the charge – at least insofar as they determine a surface upon which a 
test charge will experience a singular electromagnetic force. Due to the effective space-time 
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extension of a superluminal charge, at every point in time on the dual circular motion analyzed 
above each charge feels an infinite force from its partner from two places at once, as illustrated in 
Figure 2. (It may additionally feel the influence of any number of finite forces, though these do not 
arise from the effective extension but from zero-dimensional points on the world line.) Each instance 
of the infinite force arises from those points where the world-line of one charge source intersects the 
effective extension (of co-dimension 1) of the other source.  
 

Conclusion 

From the analysis of two particles in a positronium-like configuration it has been demonstrated that 
there exists a non-trivial physics of classical direct-action electromagnetism of point sources with 
mechanically uncompensated electromagnetic mass, even though those masses are infinite. In the 
absence of mechanical mass adequate infinite forces have been found to arise from distant charges in 
superluminal motion. The forces can be regarded as deriving from superluminally-induced change in 
dimensionality of a source from a 1D world line to a hyper-surface in 3+1D. In the particular case 
analyzed it was found that the adequate infinite forces exist only for discrete values of the 
parameters of the motion, resulting in quantized values for the total energy and angular momentum.  
 

29 of 45

Friday , April  29, 2005

Elsevier



Rev
ie

w
 C

op
y

30 

Appendix A 

 

Force, energy and angular momentum of a system of particles  

governed by a two-time action 

A.1 Introduction 

In classical mechanics Noether’s theorem is usually applied to an action has just one time variable 
and contains only first derivatives:  

 ( ); ,I dtL t q q= ∫ � , (A1) 

where q can have any number of components. Barut [35] gives a generalization to an arbitrary 
number of derivatives, but still in one time variable. Hoyle and Narlikar [20] compute the stress-
energy tensor for the traditional direct-action - i.e. the non-self-interacting and therefore non-
singular form - by functional differentiation with respect to the metric. This requires first 
formulating the direct-action theory in Riemannian space-time, which involves some additional 
subtleties. We avoid that method here because i) We wish to avoid a lengthy derivation of the direct-
action in curved space-time, and ii) Some additional investigation will be required to determine that 
the presence of singular self-action and singular distant action does not invalidate that approach. 
Instead, we will work with the classical two-time Lagrangian  

 ( ) ( ) ( ) ( )( ); , , ,I d d J q q q qλ λ λ λ λ λ λ λ′ ′ ′ ′= −∫ ∫ � � (A2) 

in flat space-time without computing the intermediate stress-energy tensor. The approach adopted 
here is to cast (A2) in the one-time form (A1) by introducing auxiliary degrees of freedom subject to 
constraints, as described in section A.2, and then apply Noether’s theorem to that one-time action. In 
section A.3 it is demonstrated that the new ‘alternative’ one-time form gives the same Euler equation 
as obtained for the original two-time form. In that analysis q is a 4-component vector that is the 
locus of the particle world-line. The corresponding Euler equation is valid for trajectories that time-
reverse. If it is known a priori that there are no time reversals, then a very similar analysis can be 
performed restricting q to three degrees of freedom, the results of which are simply stated in section 
A.4. The resulting one-time action is the starting point for computing the energy in section A.5 and 
in section A.6 the energy is given for the particular case that the original two-time action is that of 
direct action EM. In section A.7 is computed the angular momentum for the alternative action of 
section 4 and section A.8 gives the angular momentum for the particular case that the original two-
time action is that of direct action EM. 
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A.2 Conversion from two-time to one-time form 

In this appendix we will consider the general case of a two-time action that can be written in the 
form 

 ( )1 2 1 2 1 2 1 2, , ,..., , ,..., , ,..., , ,... JI d d J x x u u x x u u d Lλ λ λ λ λ′ ′ ′ ′ ′ ′= − =∫ ∫ ∫  (A3) 

where 

 ( )1 2 1 2 1 2 1 2, , ,..., , ,..., , ,..., , ,...JL d J x x u u x x u uκ κ + + + +≡ ∫ (A4) 

and where the following shorthand has been used for the 4-vectors x and u

( ) ( ) ( ) ( ) ( ) ( ), , , , ,j j
j j j j j j j j j j

dx dx
x x u x x u x x u u

d d
λ λ

λ λ λ κ λ κ
λ λ

+ +′
′ ′ ′≡ ≡ ≡ ≡ ≡ + ≡ +

′
. (A5) 

Note the form (A3) precludes a more general possibility wherein the kernel depends explicitly on 
both times independently; it depends explicitly only on the difference between the two times. Clearly, 
the direct-action (3) is in this form. In particular,  

 ( )2 2

, 1s

j k j k k j
j k

J e e u u x x
σ

δ σ+ +

=±

 = − − + ∆ 
 ∑ ∑ � . (A6) 

Eq. (A3) can be written as a one-time action by expressing the position and velocity at time λ κ+ in 

terms of the derivatives of the position at time λ as a Taylor series: 

 ( ) ( )1

0 0
,

! !
m m

m m
j jj j

m m
x x u x

m m
κ κ ++ +

= =
= =∑ ∑ . (A7) 

Here and subsequently it is assumed that the trajectory is infinitely differentiable, and that series 
such as (A7) converge. Because we wish to cast (A3) as a one-time action with only first derivatives, 

we now proceed as if, for each m, ( )m
jx in (A7) is an independent variable to be varied when 

extremizing the action (A3), and establish the association between ( )m
jx and ( )m

jd d xλ with 

Lagrange multipliers. In place of (A3) therefore, consider the action I d Lλ= ∫ where 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 1 1 2 2
1 2 1 2 1 2

0 0 1 1 2 2 0 0 1 1 2 2
1 2 1 2 1 2 1 2 1 2 1 2

0 0 1 1 2 2
1 2 1 2 1 2

, ,..., , ,..., , ,...,...,
, ,..., , ,..., , ,...,... , ,..., , ,..., , ,...,...,

, ,..., , ,..., , ,...,...
auxJ

x x x x x x

L L x x x x x x L x x x x x x

p p p p p p

 
 
 = +
 
 
 

� � � � � � , (A8) 

where auxL is the auxiliary density 

 ( ) ( ) ( ) ( )( )1

,

m m m
aux j j j

j m
L p x xλ += −∑ �� . (A9) 

JL is the original density JL but with the replacements 

 ( ) ( ) ( )1 1, , ,
! !

m m
m m

j j j j jj j j
m m

x x u x x x u x
m m
κ κ ++ +→ → → →∑ ∑  (A10) 
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so that (A4) becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 1 1 1
1 2 1 2 1 2 1 2, , ,..., , ,..., , ,..., , ,...

! ! ! !
m m m m

m m m m
J

m m m m
L d J x x x x x x x x

m m m m
κ κ κ κκ κ + + 

≡  
 

∑ ∑ ∑ ∑∫ . (A11) 

It may be observed that JL contains no derivatives (at all) and is in one-time form; the functions 

( )m
jx depend only on λ. In these terms the particular case (A6) of direct action EM becomes 

 ( ) ( ) ( ) ( )
2

1 1 0 2

, 1 ! !
s

m m
m m

j k sj k k jJ
j k m m

L e e d x x x x
m mσ

κ κκ δ σ+

=±

   = − − + ∆ 
   

∑ ∑ ∑ ∑∫ � . (A12) 

 

A.3 Euler equations 

The goal of the following is to show that the action (A8) is equivalent to (A3) in that the resulting 
Euler equations for the particle trajectories are the same. The Euler equations for (A3) are very 
simply obtained as follows. The increment in the action due to an increment in the trajectories is: 

 l l l l
l l l l l

I d d x u x u J
x u x u

δ λ λ δ δ δ δ
 ∂ ∂ ∂ ∂′ ′ ′= + + + ′ ′∂ ∂ ∂ ∂ 

∑∫ ∫ � � � � . (A13) 

Integrating the 2nd and 4th terms by parts, and assuming that the increments vanish on the 
boundary (i.e. in the remote λ-past and remote λ-future), this is 

 l l
l l l l l

d dI d d x x J
x d u x d u

δ λ λ δ δ
λ λ

    ∂ ∂ ∂ ∂′ ′= − + −     ′ ′ ′∂ ∂ ∂ ∂    
∑∫ ∫ � � . (A14) 

Renaming λ as λ′ and λ′ as λ one obtains 

 ( )( )ˆ1l
l l l

dI d d x S J
x d u

δ λ λδ λ λ
λ

 ∂ ∂′ ′= − + ↔ ∂ ∂ 
∑∫ ∫ � (A15) 

where Ŝ operates on J swapping λ and λ′ . At an extremum, the increment Iδ vanishes for 

arbitrary jxδ . It follows that the Euler equations for (A3) are 

 ( )( )ˆ1 0
l l

dd S J l
x d u

λ λ λ
λ

 ∂ ∂′ ′− + ↔ = ∀ ∂ ∂ 
∫ . (A16) 

 The Euler equations for the system (A8) can be computed as follows. Variation of the 

auxiliary variables ( )m
jp in the auxiliary action (A9) immediately establishes the required relation 

between ( ) ( )m
jx λ and ( ) ( )m

jd d xλ λ :

( ) ( )1, m m
j jk m x x +∀ =� . (A17) 

Eq. (A9) also gives that 

 ( ) ( )n n
l lL x p∂ ∂ =� . (A18) 
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Both the auxiliary and the original action (A11) participate in giving 

 ( ) ( ) ( )1
1

n n n
nl l lL x g p −
−∂ ∂ = − Θ  (A19) 

where g is the 4-vector 

 ( )
( )

1

,0 ,1 1! 1 !
n n

n
n n nl

l l l l

J J J Jg d
x u n nx u

κ κκ δ δ
−

−+ +

 ∂ ∂ ∂ ∂ ≡ + + + Θ 
∂ ∂ −∂ ∂  

∫ . (A20) 

Here the δ ’s are Kronecker symbols, and Θ is the asymmetric Heaviside step function limited to 

integer arguments which is zero for negative argument and otherwise one, so that 0 1Θ = . The 

derivatives of J in (A20) are to be evaluated using the form given in (A4). With (A18) and (A19), one 

has that the Euler equation for ( )n
lx is 

 ( ) ( )
( ) ( ) ( )1

1 0n n n
nl l ln n

l l

L d L dg p p
d dx xλ λ

−
−

∂ ∂
− = − Θ − =

∂ ∂ �
. (A21) 

The ( )n
lp can be eliminated by differentiating n times and alternately adding and subtracting: 

 ( ) ( ) ( ) ( )1
1 0

n n
n n n n

nl l l l
n n

d d dg p p g
d d dλ λ λ

−
−

     − − Θ − = = −     
     

∑ ∑ . (A22) 

Putting in from (A20) 

 ( )
1

,0 ,1 1 0
! 1 !

n n n

n n n
n l l l l

d J J J Jd
d x u n nx u

κ κκ δ δ
λ

−

−+ +

 ∂ ∂ ∂ ∂  − + + + Θ =   ∂ ∂ −∂ ∂    
∑ ∫ . (A23) 

Offsetting by 1 the sum over the last term in braces, 1n n n′→ = − , (A23) is 

 0
!

nn

nl l l l

J d J d J d Jd d
x d u n d dx u

κκ κ
λ λ λ+ +

    ∂ ∂ ∂ ∂ − + − − =        ∂ ∂ ∂ ∂      
∑∫ ∫ . (A24) 

Recognizing the expression in square braces as the shift operator 

 ( ) ( ):
!

nn

n

dh h h
n d
κ λ λ κ

λ
 ∀ − = − 
 

∑ , (A25) 

the second term in (A24) is 

( )

( ) ( ) ( ) ( )( )

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1

, , ,..., , ,..., , ,..., , ,...
!

, , ,..., , ,..., , ,..., , ,...

,

nn

n l l

l l

l l

d dd J x x u u x x u u
n d dx u

dd J x x u u x x u u
x d u

dd J x
x d u

κ κ κ
λ λ

κ κ λ κ λ κ λ κ λ κ
λ

κ κ
λ

+ + + +
+ +

   ∂ ∂ − −      ∂ ∂     
 ∂ ∂= − − − − − ∂ ∂ 
 ∂ ∂= − − ∂ ∂ 

∑ ∫

∫

∫ ( )

( )

( )

2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, ,..., , ,..., , ,..., , ,...

, , ,..., , ,..., , ,..., , ,...

ˆ

l l

l l

x u u x x u u

dd J x x u u x x u u
x d u

dd S J
x d u

λ λ λ
λ

λ λ λ
λ

+ + + +

 ∂ ∂′ ′ ′ ′ ′ ′= − − ∂ ∂ 
 ∂ ∂′ ′= − ↔ ∂ ∂ 

∫

∫

(A26) 
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(The third step comes from negating the variable of integration, κ.) Using this for the second term in 
(A24) and using that d dκ λ′= in the first term in (A24), one obtains (A16). It is concluded that the 

system (A8) is equivalent to the two-time density (A4).  
 Having now a one-time first order differential form for the action, one can employ the 
standard results for energy and angular momentum. 
 

A.4 Restriction to time-monotonic world-lines 

So far the trajectory x has been treated as a general 4-vector without restriction on the 0th element. 
For the remainder of the appendix however, in order to employ established results, it will be 
necessary to assume that there are no time reversals, and therefore that the 0th component is a 
monotonic function of the ordinal parameter λ. With the 0th component no longer a degree of 
freedom, in place of (A3) and (A4) we now consider the action 

 ( )1 2 1 2 1 2 1 2, , ,..., , ,..., , ,..., , ,... KI dt dt K t t dt L′ ′ ′ ′ ′ ′= − =∫ ∫ ∫x x v v x x v v  (A27) 

where 

 ( )1 2 1 2 1 2 1 2, , ,..., , ,..., , ,..., , ,...KL d Kκ κ + + + +≡ ∫ x x v v x x v v . (A28) 

Clearly these are not so general as (A3) and (A4) because the time coordinates ,t t′ , which could have 

appeared in an arbitrary way in the latter, must now appear only as a difference. The direct-action 
kernel (A6) can be written in this form: 

 ( ) ( )22 2

, 1
1j k j k k j

j k
K e e

σ
δ κ σ+ +

=±

 = − − − + ∆ 
 ∑ ∑ v .v x x . (A29) 

The Euler equations corresponding to (A16) are 

 ( )( )ˆ1 0
l l

ddt S t t K l
dt

 ∂ ∂′ ′− + ↔ = ∀ ∂ ∂ 
∫ x v

. (A30) 

The previous analysis demonstrating that (A8) is equivalent to (A4) can be repeated with the action 
specified by (A27) and (A28) as the starting point. One easily finds that the equivalent one-time 
system is 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 1 1 2 2
1 2 1 2 1 2

0 0 1 1 2 2 0 0 1 1 2 2
1 2 1 2 1 2 1 2 1 2 1 2

0 0 1 1 2 2
1 2 1 2 1 2

, ,..., , ,..., , ,...,...,
, ,..., , ,..., , ,...,... , ,..., , ,..., , ,...,...,

, ,..., , ,..., , ,...,...
auxKL L L

 
 
 = +
 
 
 

x x x x x x

x x x x x x x x x x x x

p p p p p p

� � � � � � , (A31) 

where 

 ( ) ( ) ( ) ( )( )1

,

m m m
aux j j j

j m
L t += −∑ p . x x� . (A32) 

In place of Eq. (A21) one then has 
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 ( ) ( )
( ) ( ) ( )1

1 0n n n
nl l ln n

l l

L d L d
dt dt

−
−

∂ ∂
− = − Θ − =

∂ ∂
g p p

x v
 (A33) 

where 

 ( )
( )

1

,0 ,1 1! 1 !
n n

n
n n nl

l l l l

K K K Kd
n n
κ κκ δ δ

−

−+ +

 ∂ ∂ ∂ ∂ ≡ + + + Θ 
∂ ∂ −∂ ∂  

∫g
x v x v

. (A34) 

 

A.5 Energy of world-lines extremizing a two-time action 

Treating the ( )n
lx as independent variables, the Hamiltonian for the system is 

 ( )
( )

( ) ( )

, ,

n n n
l l ln

l n l nl

LH L L∂= − = −
∂

∑ ∑v . v .p
v

(A35) 

where L is the total density. The conjugate momenta ( )n
lp can be found by solving (A33) iteratively 

as follows. From 0n = onwards (A33) can be written 

 ( ) ( )1ˆ1 n n
l l

dE
dt

+ + = 
 

p g  (A36) 

where Ê increments the superscript: ( ) ( ) ( )1ˆ ,n n nE += ∀q q q . Assuming convergence, (A36) can be 

inverted as 

 ( ) ( ) ( )
2 3

1 1ˆ ˆ ˆ1 ...
m

n n m n
l l l

m

d d d dE E E
dt dt dt dt

+ + +      = − + − + = −             
∑p g g . (A37) 

Putting this in (A35) gives 

( ) ( )

( )
( ) ( )

1

, ,

1

1,0 1,1
, , 1 ! !

m
n m n

l l
l m n

m m n m n
n

m n m n m nl
l n m l l l l

dH L
dt

d K K K Kd L
dt m n m n

τ ττ δ δ

+ +

+ + +

+ + + + ++ +

 = − − 
 

 ∂ ∂ ∂ ∂  = − + + + Θ −   ∂ ∂ + + +∂ ∂    

∑

∑ ∫

v . g

v .
x v x v

. (A38) 

The first term in braces is zero. The second term is 

( ) ( )
1,1 ,0 ,0

, , , ,

m m
n n

m n m n ll l
l n m l n m ll l l

d K d K Kd d d
dt dt

κ δ κ δ δ κ+ +
∂ ∂ ∂   − = − =   ∂ ∂ ∂   

∑ ∑ ∑∫ ∫ ∫v . v . v .
v v v

. (A39) 

The total density L appearing in (A38) is the sum (A31). However, the auxiliary density is zero once 
the Euler equations (A17) are invoked. Therefore L can be replaced with KL , which is then equal to 

KL . With this and (A39), (A38) can be decomposed as  

 0 1H H H= +  (A40) 

where 
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 0 l K
l l

KH d Lκ ∂= −
∂∑ ∫v .
v

(A41) 

and 

 ( )
( ) ( )

1

1
, , ! 1 !

m m n m n
n

l
l n m l l

d K KH d
dt m n m n

κ κκ
+ + +

+ +

 ∂ ∂  = − +   + + +∂ ∂    
∑ ∫v .

v x
. (A42) 

(Note that one cannot write (A41) as 0
K

l K
l l

LH L∂= −
∂∑v .
v

because the apparent commutivity of the 

functional derivative with the integration can be destroyed simply by a change of integration 
variable.) Since it is conserved, the energy and its time-average over t - denoted by braces - are the 
same. Here we choose to average over a period of the system. In that case the average of any total 

time derivative will vanish, ( ) 0g dg t dt∀ = , and therefore  

 ( ) ( ) ( ) ( )db t da t
a t b t

dt dt
= − . (A43) 

With this, (A42) gives 

 

( )
( ) ( )

( )
( )

1

1
, ,

1

, ,

1 ! !

1 !

m m n m n
n

l
l n m l l

m n
n m

l
l n m l l

d K KH d
dt m n m n

K d Kd
m n d

κ κκ

κκ
κ

+ + +

+ +

+ +
+

+ +

 ∂ ∂  = − +   + + +∂ ∂    

 ∂ ∂= −  + + ∂ ∂ 

∑ ∫

∑ ∫

v .
x v

v .
x v

 (A44) 

where the second term in braces has been integrated over κ by parts, and it is assumed that all 
quantities vanish on the boundary (the limits of the integration over κ). Letting m n p+ = and 

replacing the sum over m, the above becomes 

 ( )
( )

1

1
, 0 1 !

pp
p

l
l p n l l

K d KH d
p d
κκ

κ

+

+ +
=

 ∂ ∂= −  + ∂ ∂ 
∑∑ ∫ v .

x v
. (A45) 

Noting that the sum over n just gives p+1 and using (A25), this is 

 ( )
1

, !
p

p
ll

l p ll l l l

K d K K d KH d d
p d d
κκ κ κ κ

κ κ
+

+ + + +

   ∂ ∂ ∂ ∂= − = −      ∂ ∂ ∂ ∂   
∑ ∑∫ ∫v . v .

x v x v
. (A46) 

Noting that 

 l l l l
l ll l l l l

dK K K K K d K d K K
d d dκ κ κ κ κ

+ + + +
+ + + + +

      ∂ ∂ ∂ ∂ ∂ ∂ ∂   = + + = − + +         ∂ ∂∂ ∂ ∂ ∂ ∂         
∑ ∑v . v . v . v .

x v x v v
� , (A47) 

(A46) is 

 1 l
l l

dK K d KH d
d d

κ κ
κ κ κ

+
+

 ∂ ∂= − −   ∂ ∂ 
∑∫ v .

v
. (A48) 

Integrating by parts and again assuming that quantities vanish on the boundary: 
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 1 l l K
l ll l

K K K KH d K d L dκ κ κ κ κ
κ κ

+ +
+ +

 ∂ ∂ ∂ ∂= − − = − −   ∂ ∂∂ ∂ 
∑ ∑∫ ∫ ∫v . v .

v v
. (A49) 

Combining (A41) and (A49), and, for notational simplicity, extending the time average to include the 
terms in H0, one finally obtains 

 2l l K
l l ll

K K KH d d L dκ κ κ κ
κ

+
+

∂ ∂ ∂= + − −
∂ ∂∂

∑ ∑∫ ∫ ∫v . v .
vv

(A50) 

where the angle brackets denote an average over a period of t.
The plausibility of (A50) can be demonstrated by showing that the expression Eq. (A50) 

agrees with the traditional result when the action is one-time. If one sets 

 ( ) ( ),tradK Lδ κ= x v (A51) 

then (A27) with (A28) gives the traditional form 

 ( ),tradI dt L= ∫ x v . (A52) 

Putting (A51) in (A50) and noting that 0tradL +∂ ∂ =v , one has 

 ( ) ( )2 ,trad
trad trad

LH L d L
δ κ

κ κ
κ

∂∂= − −
∂ ∂∫v. x v
v

. (A53) 

Noting now that in this case the partial derivative with respect to κ is the same as the total 
derivative with respect to κ, the last term can be integrated by parts, after which one simply has 

 trad
trad

LH L∂
= −

∂
v.

v
(A54) 

as required. 

 

A.6 Energy of charges obeying direct-action EM 

Computed above is the energy associated with a general two-time action wherein the explicit 
dependence on time is only on the time difference, i.e. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2 1 2 1 2, , ,..., , ,..., , ,..., , ,...I dt dt K t t t t t t t t t t′ ′ ′ ′ ′ ′= −∫ ∫ x x v v x x v v . (A55) 

Provided the particle world lines are time-monotonic, it is shown that energy is given by (A50): 

 ( )2l l
l l l

K K KH dt K t t
t

 ∂ ∂ ∂′ ′ ′= + − − − ′ ′∂ ∂ ∂ 
∑∫ v . v .

v v
 (A56) 

where 

 ( ) ( ) ( ) ( ), , ,j j j j j j j jt t t t′ ′ ′ ′≡ ≡ ≡ ≡x x v v x x v v  (A57) 

where the angle brackets signify a time-average  (over t) over a period of the motion. In the 
particular case of the direct-action EM considered in this document, the K in (A55) implied by (3) is 
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 ( ) ( ) ( )( )22 2

1 ,
1

s

j k j k k j s
j k

K e e t t
σ

δ σ
=±

′ ′ ′= − − − − + ∆∑ ∑ v .v x x . (A58) 

Inserting (A58) into (A56), the energy a system of time-monotonic, self-interacting, mechanically 
massless particles interacting electromagnetically is found to be 

 ( ) ( ) ( ) ( )( )22 2

1 ,
2 1

s

j k j k k j s
j k

H e e dt t t t t
tσ

δ σ
=±

∂ ′ ′ ′ ′ ′= − − − − − − + ∆ ′∂ 
∑ ∑ ∫ v .v x x . (A59) 

Noting that 

( ) ( )( ) ( )( ) ( ) ( )( )2 22 22 22k j s k k j k j s
d t t t t t t

dt
δ σ δ σ′ ′ ′ ′ ′ ′ ′ ′− − − + ∆ = − − − − − − + ∆
′

v x v . x x x x . (A60) 

then 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

2 22 22 2

22 2

2k j s k j s

k j s
k k j

t t t t t t
t

t t d t t
dt t

δ σ δ σ

δ σ
κ

+∂  ′ ′ ′ ′ ′− − − + ∆ = − − − − + ∆ ′∂  
′ − ′ ′= − − − + ∆

′ ′ ′− − −

x x x x

x x
v . x x

. (A61) 

Putting this in (A59) and integrating the second term by parts gives 

( ) ( )
( ) ( ) ( )( )

2
22 2

1 ,

1
2

s

j k
j k k j s

j k k k j

t tdH e e dt t t
dt t tσ

δ σ
=±

  ′ ′− −  ′ ′ ′= + − − − + ∆
 ′  ′ ′ ′− − −

  
∑ ∑ ∫

v .v
x x

v . x x
. (A62) 

Noting that the result of a total differential is insensitive to the choice of algebraic representation of 
its operand, the 4-vector notation can be restored to give 

 ( ) ( )
2

2 2
,

1 , ,
2

s

k j
j k k j s

j k k k j

t t u udH e e dt s
dt u sσ

δ σ
=±

  ′ ′−  ′= − + ∆
′ ′  
  

∑ ∑ ∫
�

�
. (A63) 

Carrying out the integration over t’ and performing the differentiation, this is 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

2
, ,

3 2 21 , , , ,

2 21
2

s

k k j k k j k jj k

j k roots k k j k j k k k j k k j k j

u s t t u s u ue e
H

u s t t u u u a s u s a uσ +=±

 ′ ′ ′ ′− − =  ′ ′ ′ ′ ′ ′+ − + − 
 

∑ ∑ ∑
� � �

� � � � �
. (A64) 

where the roots are those values of t’ satisfying (17). Eq. (A64) is a generally valid expression for the 
total energy of a system of time-monotonic mechanically massless particles interacting according to 
direct-action EM. It is evaluated in the particular case of dual circular motion in the following 
section. 
 

A.7 Angular momentum of world-lines extremizing a two-time action 

Treating the ( )n
lx as independent variables, the angular momentum L of the density (A31) is 

 ( )
( )

( ) ( )

, ,

n n n
i l ln

l n l nl

L∂= × = ×
∂

∑ ∑L x x p
x�

. (A65) 
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Using the result (A37) for the conjugate momentum and inserting (A34) this is 

( )
( ) ( )

1

1,0 1,1
, , 1 ! !

m m n m n
n

m n m n m nl
l m n l l l l

d K K K Kd
dt m n m n

κ κκ δ δ
+ + +

+ + + + ++ +

 ∂ ∂ ∂ ∂  = × − + + + Θ   ∂ ∂ + + +∂ ∂    
∑ ∫L x

x v x v
. (A66) 

We now proceed much as for the energy. The first term in braces is zero. The second term is 

( ) ( )
1,1 ,0 ,0

, , , ,

m m
n n

m n m n ll l
l m n l m n ll l l

d K d K Kd d d
dt dt

κ δ κ δ δ κ+ +
∂ ∂ ∂   × − = × − = ×   ∂ ∂ ∂   

∑ ∑ ∑∫ ∫ ∫x x x
v v v

. (A67) 

Using (A67) we can write for (A66) 
 0 1= +L L L (A68) 

where 

 0 l
l l

Kdκ ∂= ×
∂∑ ∫L x
v

(A69) 

and 

 ( )
( ) ( )

1

1
, , 1 ! !

m m n m n
n

l
l m n l l

d K Kd
dt m n m n

κ κκ
+ + +

+ +

 ∂ ∂  = × − +   + + +∂ ∂    
∑ ∫L x

x v
. (A70) 

Since it is conserved, the angular momentum and therefore its time-average over t - denoted in the 
following by angle-brackets - are the same. Repeating steps leading from (A44) to (A46) then gives 

 1 l
l l l

K d Kd
d

κ κ
κ

+
+ +

 ∂ ∂= × −  ∂ ∂ 
∑∫L x

x v
. (A71) 

Integrating the second term by parts: 

 1 l l l
l l l l

K K Kdκ κ+ + +
+ + +

 ∂ ∂ ∂= × + × + ×  ∂ ∂ ∂ 
∑∫L x x v

v x v
. (A72) 

Combining this with (A69) one has that the angular momentum of a system with action (A27) with 
(A28) is 

 l l l l
l l l l l

K K K Kdκ κ+ + +
+ + +

 ∂ ∂ ∂ ∂= × + × + × + ×  ∂ ∂ ∂ ∂ 
∑∫L x x x v

v v x v
. (A73) 

 

A.8 Angular momentum of charges obeying direct-action EM 

The general result for the angular momentum vector of a closed system whose action is of the form 
(A55) is 

 ( )l l l l
l l l l l

K K K Kdt t t  ∂ ∂ ∂ ∂′ ′ ′ ′ ′= × + × + − × + × ′ ′ ′∂ ∂ ∂ ∂ 
∑∫L x x x v

v v x v
. (A74) 

Using the K introduced in (A58) the angular momentum of a system of time-monotonic, self-
interacting - but mechanically massless - particles interacting electromagnetically is 
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( )( ) ( ) ( )

( ) ( )( )2, 1 2 2

1

s

j k k k j k j k
k

j k
j k

k j s

t t t t
e e dt

t tσ δ σ=±

 ∂′ ′ ′ ′ ′ ′ ′× + + − × + − − × ′∂ ′=
′ ′× − − − + ∆

∑ ∑ ∫
x v x v v v .v x

xL
x x

. (A75) 

Using that 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

2 22 22 2

22 2

2k j s k j k j s
k

k j
k j s

k k j

t t t t

d t t
dtt t

δ σ δ σ

δ σ

∂ ′ ′ ′ ′ ′ ′− − − + ∆ = − − − − − + ∆
′∂

′ −
′ ′= − − − − + ∆

′′ ′ ′− − −

x x x x x x
x

x x
x x

v . x x

, (A76) 

and assuming all relevant quantities vanish on the boundary, (A75) can be written 

( )( ) ( ) ( )
( )

( ) ( )( )
( )( ) ( ) ( )

, 1 22 2

, 1 ,,

1

1
2

s

s

k j k j
j k k k j

k k jj k
j k

k j s

k j k jj k
j k k k j

j k roots k k jk k j

t tdt t
dt t te e dt

t t

t t u ue e dt t
dt u su s

σ

σ

δ σ
=±

=±

  ′ ′ ′− − ×
  ′ ′ ′ ′× + + − × −

 ′ ′ ′ ′− − −′=   

′ ′× − − − + ∆

 ′ ′ ′− ×
′ ′ ′ ′= × + + − × +
′ ′′ 

∑ ∑ ∫

∑ ∑ ∑

v .v x x
x v x v v

v . x xL

x x

x x
x v x v v

�
��

( ) ( )( )( )
( ) ( ) ( )
( ) ( )( )

( ) ( ) ( )

2
,

,3
, 1 ,

,

2
,

1
2

s

k k j j k k k j

j k
k k j k j k j

j k roots k k j
k k j k j k j

k j
k k k j k j

u s t t
e e

t t u s u u
u s

u s u u t t a u

t t u a s u u

σ =±

 
 

  

 
 
 ′ ′ ′ ′ ′× + + − × 
 ′ ′ ′ ′= + − × 

′   ′ ′ ′ ′+ −   ′+ ×  ′ ′ ′ ′ − − +  

∑ ∑ ∑
x v x v v

v x

x x

�

� �
�

� � �

� �

. (A77) 
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Table 1 

Title: Solutions of the equation 0 0tan 1β β = − with 2
0 0 1β= +v .

mode index 0β 0v

1 2.798    2.972  

 2 6.121    6.202  

 3 9.318    9.371  

 4 12.486 12.526  

 5 15.644 15.676  

 6 18.796 18.823  

 7 21.946 21.968  

large n nπ nπ
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Figure Captions 

Figure 1a 

Effect of modified light cone condition on points of interaction. The present position of the particle is 

at the origin. The two nearby dots show the points of local self-action. The two pairs of distant dots 

show the points of distant action for arbitrary motion of a distant trajectory. 

 

Figure 1b 

The same modified light cone condition except now the distant trajectory intersects the light cone at 

a tangent so there is just one point of interaction with each segment. In 1+1D tangency to the light 

cone necessitates light-speed at the point of contact, but in 2+1D and 3+1D the tangency condition 

can be fulfilled by a distant trajectory having any superluminal speed. 

 

Figure 2a 

Forces keeping the two charges in circular motion. A positive charge of infinite electromagnetic 

mass, here denoted by the red disk, lies – simultaneously - on the light cone and the Cerenkov cone 

of both the points indicated by dark blue disks, which are historical and future locations of the 

negative charge. The resultant force on the positive charge is singular and directed towards the 

origin. An identical relationship exists between the present location of the negative charge and the 

historical and future locations of the positive charge. 

 

Figure 2b 

Details of the geometry showing the role of the angle β for the mode n = 1.  A charge moves through 

an angle 2β during the time it takes for the singular electromagnetic contact to propagate to its 

opposite signed partner. For the mode n = 1 this is o5.596 rad. 320.6= .
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Figure 3 

A rendering of the circular motion in 2+1D for the modes n = 1 (left) and n = 2 (right), showing points 

of singular electromagnetic contact. The lower / upper brown dots, for example, show the location of 

positive charge when it was / will be simultaneously on the light-cone and Cerenkov cone of the 

present location of the negative charge. 

 

Figure 4 

A rendering of the circular motion in 2+1D for the mode n = 1 showing the interaction points on the 

light cone of the positive charge. The pink dots are non-singular distant self-interactions. The pale-

blue dots (only one of which is visible in this view) are non-singular distant interactions with the 

other – negatively-charged – particle. The dark-blue dots are the singular distant interactions with 

the negatively-charged particle, the space-time helical path of which grazes the light cone at these 

points in fulfillment of the Cerenkov cone condition. The heavy black lines show the locus of the 

singular interactions – the intersection of the Cerenkov cone with the light cone. 
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Legend: Effect of modified light cone condition on points of interaction.
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Legend: Distant trajectory intersects the light-cone at a tangent.
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Legend: Forces keeping the two charges in circular motion.
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Legend: Details of the geometry.
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Figure No: 3

Legend: Rendering of motion in 2+1 D for modes n = 1 and n = 2.



Figure No: 4

Legend: Mode n = 1 showing one light cone.




