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It is shown that the quadratic dependence of electric energy on electric strength causes an additional 
electric energy in comparison with the energy corresponding to a macroscopic electric field. The force 
acting on a dielectric, in general, does not act on the bound polarization charge. The Maxwell stress tensor 
in dielectric is considered. 

 
I. The standard explanations are incorrect. Results 
 

As is well known, the electrical energy  

∫= 2/2dVEW                                                                (1.1) 
of a capacitor of a constant electric field E  is being multiplied by the factor ε  when the capacitor is being filled 
up by a dielectric with dielectric constant  (we set ε 10 =ε ) 

∫ ε= 2/2dVEW .                                                              (1.2) 
We are interested in what is nature of the extra energy? 

D. Griffiths [1] answers this subtle question. 
According to him, the energy corresponds to the work 
involved in stretching the dielectric molecules. He writes 
that if we picture the positive and negative charges as held 
together by tiny springs, the spring energy, , 
associated with polarizing each molecule, must be taken 
into account.  
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We will show this explanation is not completely 
correct. We will show the “spring” energy is zero, or the 
“spring” energy is located not in the “spring”. 

Another subtle question is where does the force 
exert over a dielectric slab pushed halfway into the gap of 
the parallel-plate condenser? There are, at the minimum, 
three different answers. 

E. Dietz [2] attributes the force directly to the 
fringing electrical field (see Fig. 1 from [2]. The force on a 
single electric dipole  within the dielectric is given as 

, so at a point where the polarization is 
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and the volume force 
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exerts over the slab. Integrating of (1.4) yields  

2/)1( 2aEF −ε=                                                                  (1.5) 
where  is the area of the butt-end of the slab. This result coincides with the result of the standard energy 
method [1],  
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but the author emphases the dominant contribution to the integral (1.4) is due to the fringing field region, 
whereas in the standard energy approach, the calculation of )(yWy∂  during the virtual displacement seems to 
be on the interface between the air and the dielectric at 0=y  in Fig. 1. 

C. Utreras-Diaz [3] argues, quite the 
contrary, the force acts on bound polarization 
charges located on dielectric surfaces 
bordering upon the condenser plates. He does 
not use eqns (1.3), (1.4) and calculates the 
force between the condenser and the slab as 
the force between the charge distributions, as 
shown in Fig. 2 from [3] where  are the 
(attractive) forces between the upper/lower 
conducting plate and upper/ lower dielectric 
surface; and  are the (repulsive) forces 
between the upper/lower conducting plate and 
lower/upper dielectric surface. His result is the 

same, (1.5). 
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S. Margulies [4] interprets eqn. (1.4) in term of bound polarization charges located on the slab surface, 
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where  is a surface element of the boundary ida V∂  of the slab volume V , jE  is the field inside the boundary, 
and  is the bound charge at . According to (1.7), the author claims the force (1.5) arises from the 
interaction of the electric field in the dielectric with the bound polarization charge at the surface of the 
dielectric. But, according to [4], the force exerts on the surface of the slab outside the gap of the condenser, in 

We will show all three answers are incorrect. We will show that the force acts on the 

i
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the region I of Fig. 3 from [4], rather than in the region II and III, as previous author insists. 

surface of the slab, 
but on 

                                                              (1.8) 

and (1.7) are incorrect because 

the butt-end of the slab where there are no bound charges. In general, bound charges cannot be used for 
obtaining of a force. Besides this, Eqns. 

p
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jE  is not defined on the boundary surface, i.e. jE  has a discontinuity on the 
surface of the dielectric. The wrong formulae (1.7), (1.8) give the right result in ecause only the tangential 4 b



component of jE , which is continuous at the surface, gives a contribution in (1.7) due to symmetry of the 
condenser.  

Note, the place of applying the force affects internal stresses of the dielectric material and is 
determinable experimentally. And another argument against the forces (1.7), (1.8) exists. A liquid cannot bear 
tangential load. So, tangential forces from [3, 4] lead to a paradox if the attractive force pulls a liquid dielectric 
into vertical parallel plates dipped into the dielectric liquid. Forces, acting on a piece of dielectric of constant ε , 
are surface forces, normal to the surface of the piece, according to the fundamental formula for the volume force 
[5]

2/grad2 ε−= Ef .                                                   (1.9) 
 
II. Griffiths’ spring energy. 
  

Here we calculate the energy of the stretching molecules or atoms. 
First of all it is clear that the picture of the positive and negative charges a
held together by the Coulomb force 2q  unreal because the 

dipole moment of such a molecule is 
not proportional to an external electric 
field. Thus we adopt, according to 
Feynman [6], that an atom has a 
positive charge on the nucleus, which 
is surrounded by negative electrons. I
an electric field, the nucleus will be 
attracted in one direction and the 
electron in the other. The orbits or 
wave patterns of the electrons (or 
whatever picture is used in quantum 
mechanics) will be distorted to some 
extent, as shown in Fig. 10-4; the 
center of gravity of the negative 
charge will be displaced and will no 
longer coincide with the positive charge of the nucleus. If we look from a 
distance, such a neutral configuration is equivalent, to a first approximation, 
to a little dipole. We will show that energy of such an atom does not change 
with its polarization. 
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For simplicity, we consider the nucleus as a plate with a charge 
density  in the center of a negative charged layer of a thickness l  
(Fig. 4). The volume charge density of the layer is 

0>σ
σ=ρ<ρ−  The 

relationships of electric field  and potential φ  to the coordinate are 
plotted in Fig. 4.  
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Electrical energy per unite surface of such an atom can be readily c

.                                     (2.3) 



When the atom is placed into an external electric field , the positive charged plate is displaced at the 
distance 

1E
ρ/1E  as is shown in Fig. 5 where the electric field and the 

potential is plotted as well, 
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Substituting (2.4) into (2.3) yields the same result (2.3) independently on 
value of . Thus there is no polarization energy inside the atom. 1E

Absence of the polarization energy 
inside the atom can be confirmed by 
another model of an atom. Consider an 
atom consists of positive and negative 
substances, which are put one over other. 
For this atom inner electrical field and 
energy is zero. When the external field 
appears, these substances are displaced 
one from other. In the new equilibrium 
state, there are surface charges on the 
sides of the atom, but the inner field and 
energy are conserved to be zero. This is 
depicted in Fig. 6. Such an atom behaves 
as a piece of electric conductor.  

Accordingly, Feynman suggested 
a simple model for what happens with 
dielectrics – that inside the material there 
are many little sheets of conductive 
material, or conducting spheres separated 
from each other by insulation, as shown i
Fig. 10-3. The phenomenon of the 
dielectric constant is explained by the 
effect of the charges which would be 
induced on each sphere. The dielectric 
constant ε  would depend on the 
proportion of space which was occupied 

by the conducting sheets. 
 
III. Electric energy is proportional to square of electric field strength  
 

So-called “macroscopic” electric field E  is a smoothing of a real, “microscopic” field  in a dielectric. 1E
E  is a fictitious field. The spatial variations of the real field  occur over distances of the order of 101E -10 m, and 
the sense of the smoothing, or averaging of the field is a satisfaction of the equality 

∫∫ = EdxdxE1 ,                                                    (3.1) 
which provides the right potential difference between boundaries of a dielectric piece. Because electric energy is 
proportional to square of electric field strength, real energy W  is larger than fictitious expression W : 1

∫∫ =>= 2/2/ 22
11 dVEWdVEW .                                               (3.2) 



Consider this equation in details by the use of the Feynman’s model with sheets of conducting material 
of thickness l  separated by insulation of thickness . This model is presented in Fig. 7 where  is an external 
field generated e.g. by plates of a condenser. The field penetrates into material of the dielectric to first 
conducting sheet. Eqn. (3.1) gives a value of the dielectric constant for such a model, 
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whereas eqn. (3.2) gives the real energy density, i.e. the time component of Maxwell energy-momentum tensor 
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This is a solution of the polarization energy problem. 
 
IV. Mechanical stresses in dielectric.  
Field is normal to the surface 
 
If a dielectric is in a uniform external electric field , in 
the frame of using model, this field stretches the 
conducting sheets, i.e. causes a negative pressure along 
the x-axis which corresponds to the component of the 
Maxwell stress tensor  
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This field does not produce strength in the isolating 
sheets. Thus, the average mechanical stress in the 
material, i.e. pressure, i.e. the corresponding component 
of the mechanical stress tensor, is 
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Since surface polarization charge density is  
−=σ ,                         (4.3) 

the pressure (4.2) cannot be found as the product fp Eσ , 
where E 2/)( 1 EEf +=  is the free field (which will 
remain if the polarization charges σ  is removed). We 
have the wrong result, according to this paradigm,  
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instead of (4.2), and according to eqn. (1.7) we have a 
wrong result as well: 

.          (4.5) 
At the same time, the negative electric pressure 

(4.1) is contained in the isolating sheets. Thus, the a
electrical stress in the dielectric along the x-axis, i.e. the 

corresponding component of the average Maxwell stress tensor in a dielectric, is 
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Naturally, this quantity is coincided with energy density (3.4) in a magnitude. The total pressure in the 
dielectric,  
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equals the Maxwell tensor component for the external field  (4.1). So we have 1E
xxxx
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at a free surface of a dielectric. 
If the field  is produced by condenser plates, the plates experience mutual attractive forces 

corresponding to the component of Maxwell tensor (4.1). If the plates lean on the dielectric, the plates compress 
the dielectric with the pressure , and a bonded strain gage will show the corresponding force. 
Under this condition the total pressure in the dielectric is zero, according to the conducting sheets, which are 
stretched in the absence of the condenser plate, have no stress, and the insulation is mechanically compressed 
but contains stretching of the electric field. 
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V. Maxwell stress tensor in dielectric 

 
Average pressure in the y-direction (and z-direction) of the electric field inside the dielectric is, in 

accordance with (4.6), 
2/2ET yy

e
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So, energy-momentum tensor of the electric field in dielectric has the components (3.4), (4.6), (5.1): 
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where xE  is the fictitious, average electric field, which is x-directed. Spatial components of (5.2) can be 
combined into the Maxwell stress tensor in dielectric: 
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It is remarkable that the simple Feynman’s model of dielectric gives this important expression.  
If our dielectric is bounded by the surface 0=y , as in Fig. 1, then the outside pressure of the external 

field E , , is less then (5.1), yyT1

2/2
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So, material of our dielectric must be stretched in the y-direction, i.e. the pressure yyT  exerts on the surface, 
although there are no bound charges at the surface: 
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This result gives the force (1.5) acting on the slab. 
The beginnings of the pressure (5.5) are explained in 

Fig. 8. Lines of electric field become bent near the butt-end of 
the slab and pull the material upwards. 

The relations (5.5), (4.8) for the stress tensor T  can be 

obtained in a general form. If 
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ε  has a jump at a surface of 
dielectric, we encircle an element da  of the surface by a c
tablet-like surface which bounds an infinitesimal volume 

dadV = inus divergence of a stress tensor is a 
volume force, the force acting on the volume dV  is 
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because . (Here  denotes the surface element in vacuum, and  denotes the stress tensor in 

vacuum, when ). 
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Now we prove that the force (5.6) acting on a surface of dielectric is normal to the surface. We start from 

an expression  where ρ  is free charge density. We have iEρ
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Substituting (5.8) into (5.7) yields  
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Thus the volume force acting on dielectric is 
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or (see (1.9)) 
Ef ρ+ε−= /2grad2E .                                                     (5.11) 

Since  is normal to a surface of dielectric and εgrad 0=ρ  at the surface,  from (5.11) and  from (5.6) are 
normal to the surface, Q.E.D. 
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Importantly! In reality, electric field in a neighborhood of a dielectric surface determines the Maxwell 
tensor (5.3) in vacuum  and in the dielectric, but does not determine material stress tensor . We will 

break the relations (5.5), (4.8) by our hands if we apply mechanical stress to the dielectric. But the surface force 
(5.6) is determined by the electric field; the transvection of  and  is determined by (5.6). 
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VI. Force acting on a surface of dielectric 
 

Now we calculate the pressure on a surface of dielectric in the case when the exterior field  enters 
dielectric at angle  with the normal, which is parallel to x-axis. The components of the field near and inside of 
the dielectric are  
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Thus, components of the Maxwell tensors, according to (5.3), are 
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Substituting of (6.2) into  
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and the pressure on a surface of dielectric is 
2/)]1(sin)/11(cos[ 222

1 ε−α+ε−α−== ETp xx

mm .                            (6.6) 



If ,  in accordance with (4.2). If ,  in accordance with (5.5) 
because  stands here for 
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