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Abstract

Faraday’s field lines are not enough for an adequate graphical representation of electromag-
netic fields. It is necessary to use bisurfaces. The bisurfaces and field tubes, replacing the field
lines, permit to represent evidently, for example, how electric current creates magnetic field,
and electric field produces scalar potential field.

A conception of differential forms and contravariant tensor densities is used. We say that
an exterior derivative of the form or a divergence of the density result in boundaries of the
geometric quantities. The integration of the quantity by the Biot-Savarat formula results in a
new quantity. We name the quantity a generation. Generating from a generation yields zero.
So, generations are sterile as well as boundaries are closed. A conjugation is considered. The
conjugation converts a closed quantity to a sterile quantity and back. The conjugation differs
from the Hodge operation. The conjugation does not imply a dualization. Chains of field and
an analog of Hodge decomposition theorem are considered

PACS numbers: 01.40.Fk, 03.50.De, 02.40.-k

1 Introduction

We consider stationary electromagnetic fields in vacuum.
1. Asis orthodox, electrical charges produce electric field E. This phenomenon is usually depicted

as follows [1, p. 670], [2, Fig. 4-12]
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Figure 1: Electric strength E (from [1, 2])

In Fig. 1 I have reproduced the presentation of the electric field from the famous books [1, 2].
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Figure 2: Images (F is electric strength) [3]

But the statement and the Figure seem to be incorrect. The point is that electric strength E is a
covariant vector due to E = —grad¢, or E; = —0;¢, and covariant vectors are depicted by bisurface
elements rather than by arrows [3, p. 133], [4].

This interpretation of a covariant vector was well known for a long time. For example, professor
J. A. Schouten delivered lectures on this subject before the war at Delft, and after the war at
Amsterdam (see the book [3] which was grown from the lectures; it is a classical monograph). The
interpretation was used also by J. Napolitano and R. Lichtenstein [4]. They wrote, “We refer to this
pictorial representation of a covector as a ‘lasagna’ vector” (lasagna is a type of Italian food made
with flat pieces of pasta, meat or vegetables, and cheese). J. A. Schouten depicted a covector as a
pair of flat elements. I have reproduced Schouten’s Fig. 23 here in Fig. 2. I name the pair of flat
elements a bisurface element. Therefore, pairs of surfaces, i.e. bisurfaces, must depict a covector
field. A covariant vector field E(z) is depicted by bisurfaces which are tangent to the elements rather
than by lines.

In contrast to E, electric displacement D is not a gradient. D has another nature. Electric
displacement D is a (contravariant) vector demsity. It agrees with divD = p, or §;D° = p. Field
tubes depict contravariant vector densities. This fact is represented at Schouten’s Fig. 23 and in my
Fig. 2. So, electric charges produce the field D(z) rather than E. The D-feld is depicted by tubes.
Electric charge density p is a source of D. D-tubes are emerged from p (Fig. 5). We will make the
statement more precise in Sec. 2. In Sec. 3 we show that E is a source of electrical scalar potential

¢, that E produces ¢.

2. As 1s orthodox, electric currents produce magnetic vector field. This phenomenon is depicted

in Figure 3 [5, p.288], [2, Fig. 13-7]
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Figure 3: Magnetic field (from [5, 2])

I have reproduced the presentation of the magnetic field from the authoritative books [5, 2] in Fig
3. But the Figures seem to be incorrect.
The main aim of this paper is to demonstrate that the electric, magnetic fields, the fields of electric



and magnetic potentials, i.e. all electromagnetic fields, are depicted by geometrical objects which
are emerged from their sources just as tubes of electric displacement D are emerged from electric
charges in Fig 5. To demonstrate this fact, we are forced to use the true geometrical interpretation
of the electromagnetic fields which are either antisymmetric covariant tensor fields (¢, E, A, B), or
fields of antisymmetric contravariant tensor densities (p,j, D, H). This interpretation is presented
in Fig. 2.

We show that geometric images depicting a magnetic field, which is produced by electric currents,
are emerged from the electric current tubes j (Fig. 8). These images must not make loops around
the lines. You see, D-tubes do not make loops around a charge.

Note, electric current vector density j cannot produce a vector field, i.e. it cannot be a source
of a vector field; and it cannot be a source of the magnetic induction B because B is a covariant
bivector Bjj, due to B = curlA, or By, = 20;4. So, j = curlB, or 4* = 0, B;;, is nonsense.

As a matter of fact, the electric current vector density j* produces magnetic strength bivector
density H**. j is a source of H: j = curlH, or j¢ = 9, H*. But bivector density H* is depicted by a
bisurface element [3] rather than a vector-arrow, and H(z)-field is depicted by bisurfaces which are
emerged from j-tubes (Fig. 8). We will make the statement more precise in Sec. 5.

3. As is orthodox, lines of the vector potential A make loops around B-lines as well as B-lines
make loops around j-lines. This phenomenon is depicted in Figure 4 [2, Fig. 15-6].

Fig. 15-6. The magnetic field and
vector potential’of a long solenoid.

Figure 4: Vector potential A (from [2])

But the statement and the Figure seem to be incorrect.

Since B = curlA, or By, = 20); Ay, the vector potential A is a covariant vector, and B is a source
of A, i.e. B produces A. So, geometric images depicting a field, which is produced by the B -tubes,
must emerge from the tubes, rather than make loops around the tubes. A-field must be depicted by
bisurfaces emerging from B-tubes. (Fig. 9). We will make the statement more precise in Sec. 6.

So, the four fields, £, D, H, B, differ from one another in physical sense and in geometrical
representation even in vacuum. But the fields are conjugate in pairs (Sec. 9).

All electrimagnetic fields are fields of geometric quantities [3]. Geometric quantities are indepen-
dent on a co-ordinate system. Because of this independence components of geometric quantities vary
with the co-ordinate system. For example,

E; = E; 0.

Here 0¢ is the matrix of the coordinate transformation z'(z): 9¢ = 0z /0z'. We use marked indexes.



2 p generates D

We use the verb generate instead of ‘produce’,; ‘create’; ‘set up’.
Scalar charge density p, generates electric displacement D% which is a vector density of weight
+1 by the formula

prr(2)rd (z, 2" )dV™
o) = | . (1)
drrd(z, x')

Gothic letters are usually applald to denote tensor densities. We shall, instead, mark the density
with the symbol ‘wedge’ at the level of bottom indices for a density of weight +1 and at the level of
top indices for a density of weight —1. Volume element is a density of weight —1, dV".

The primes mark a varying point @’ in the integral (1) rather than another coordinate system.

We mark the generation by sign x; generations mostly possess an important quality, see Sec. 7.
The cross is the best notations for generations because geometrical images of the generations are
emerged from their sources as well as in Figures 5, 8, 9, 10, 11.

Tensor densities differ from tensors: the transformation law of density involves the modulus of
Jacobian. For example,

Di. = Do} | A @)
Here 0}, is the matrix of the coordinate transformation: 9% = dz*/9z", A’ = Det(9?') designates the
determinant of the inverse matrix.

We say that lx)’/\ 1s a generation from p,, or that pa is a source of lx)’/\ The symbol dagger t is

used for a brief record of generating. For example:
D W= T (3)

The geometric image of a vector density of weight +1, D%, is a cylinder with an inner orientation
[3]. Hence a vector density field is represented by tubes with an inner orientation.

The scalar density of weight +1, pa(z), is represented by balls with orientation arrows which jut
out.

Generating of lx)’/\ from p, is represented in Fig. 5
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Figure 5: p generates D

The orientation arrows of p, and DY are in concord.
It is clear that the balls are ends or boundaries of the tubes. This circumstance is expressed by
the equation:

pr = 0 Di\. (4)

X



We say that divergence of a vector density is a boundary of this density, and we name the density
under the derivation a filling of the boundary. So p, is the boundary of D%, and D* is a filling of
X X
pnr. We must replace Figure 1 by Figure 5.
It is important that the generation D% (1), (3) is determined uniquely, but the filling D¢ in (4)
X X
admits an addition of a divergenceless term D ’/\ O; D’}\ = (. We name divergenceless densities closed

densities and mark them by bullet.
pn=0(DX+ D), Di="1pa ()

Note that the term ‘closed’ is inapplicable to p, because a divergence of p, do not exist.

3 E generates ¢

As is orthodox , antisymmetric covariant tensors are called differential forms. In particular, an
electric scalar potential ¢ is called a differential form of the degree 0 (or, simply, O-form). A partial
derivative of ¢ is called the exterior derivative of ¢. It is the closed 1-form of potential electric
strength fj)l

Ei= O0ip, O Ey=0 (6)

(we do not use minus in this formula).

We say that exterior derivative of a form is a boundary of this form, and we name the form under
the derivation a filling of the boundary. Note that a standard name of an exterior derivative is ‘exact
form’. We say, electric strength fj)l 1s a boundary of electric scalar potential ¢, and ¢ is a filling of

the boundary. This phenomenon is depicted in Figure 6

Figure 6: E generates ¢

The geometric representation of a covariant vector is a biplane with an outer orientation [3, 4].
Hence a form E;(z) is represented by bisurfaces with an outer orientation, and the closed form E ;(z)

1s represented by closed bisurfaces. Hatching or darkening of the space represents a scalar ﬁel(i.
You can see that the closed bisurfaces E;(z) bound the hatching, i.e. ¢-field. The cloused

bisurfaces F;(z) are filled with the hatching, i.e. with the ¢-field. The density of the hatching
increases when the bisurfaces are crossed in the direction of the orientational arrows. It seems that
the bisurfaces generate the hatching. It is possible to say that electric strength E; generates electric

scalar potential ¢, that E; is a source of ¢. It is expressed by the integral formula

Ey(z')7%, (z, 2 )dV" ;
b= [P g tE (m

b
drrd(z, x')




The formula determines the potential ¢ uniquely, even in the case of a nonpotential electric field,
but the filling, ¢, from (6) admits an addition of a constant, ¢ = Const,

Ei= 0i(¢+ Const) (8)

4 An example of the calculation of a generated potential

We apply Eq. (7) for a solution of the problem: “What potential is generated by a thin two-
dimensional ‘spherical’ capacitor?”

So, in a two-dimensional (for simplicity) space there are two concentric circles between which
a given radial electrical field E exists. It is necessary to find the potential ¢ in this space by the

formula Eo\d
o) = [ B0 )

2
27?2

where da is an element of the space (plane).

Figure 7: Two-dimensional capacitor

Er = E,r* + Eyr¥ = Ecosa(x — Rcosa) — EsinaRsina = E(z cosa — R). (10)

If we write § for the small gap between the circles, then da = Rdde.
In the sequel,

r? = R*sin* a + (z — Rcosa)’ = R* + 2* — 2zRcos a. (11)
Thus,
= l;fj /027T Zoiav—lc_oz/jda, w=R*/z*+1, v=—2R/z. (12)
Integrating yields [6]
2 .2
o) =7 (_%Uﬁ;j—gf |R2R—$x2|) (13)

L.e. ¢ =0 on the outside of the circles, that is at R < x, and ¢ = —FE4 inside the circles, that is at
R > z, just as expected.

5 7 generates H

Electric current density j% generates magnetic strength H* by the Biot-Savarat formula

, dvr :
o) =2 [ 242 e s S (14)
7r3(z, x') X

6



j% is a source of H .
X
Vector density j% is analogous to D% and is represented by tubes with an inner orientation. But
now the tubes may have no ends, i.e. they may be closed. The magnetic strength H* which is a
bivector density of weight +1, is represented by bisurfaces with an inner orientation [3].

Generating of H from j is represented in Fig. 8. The H*-bisurfaces are emerged from the closed
4% tubes, and their inner orientations are in concord.

Figure 8: j generates H

We must replace Figure 3 by Figure 8.
Fig. 8 shows that the tubes are edges or boundaries of the bisurfaces. It seems that the tubes fill
the space with the bisurfaces. This circumstance is expressed by the equation:

where . . .
HE=HX+HY (16)

may contain a closed part H’f O H’f = 0.

We say what 5% is the boundary of H*, and H is a filling of j¢.

6 B generates A

Figure 9: B generates A

Magnetic vector potential A; is analogous to E; and is represented by bisurfaces with an outer
orientation. But now the bisurfaces have boundaries:

Bij= 20 A;). (17)

The magnetic induction B;; is a covariant bivector and is represented by closed tubes with an outer
orientation [3]. The tubes bound the bisurfaces, and their outer orientations are in concord. A; is a

ﬁlhng of Bl i



On the other hand, the bisurfaces A; are generated by the closed tubes B;;. The bisurfaces are
emerged from the tubes. B;; is a source of A;. It is expressed by the integral formula

., ! i'/ ! A ]
:/Blk(‘” e, @)dVe At = 1'Ba. (18)

drrd(z, x') ’

Ak

X

We must replace Figure 4 by Figure 9.
This formula is analogous to Biot-Savarat law. It determines the potential Aj uniquely. The
X

potential stands out against a background of all gauge equivalent vector potentials. But a filling A;
in (17) admits an addition of a closed term A ;:

Bij = 20i(A 5+ Ajq)- (19)

7 The generations are sterile

Here a problem arises. What shall we get if a generation will be used as a source of a generation?
What shall we get if a generation will be substituted in the integral formula? For example, what are
the values of the integrals

lx) Ei/(:n’)ri],(x, z"dV N Ix—_fgff.(w’)ri],(w, z")dV N ,;11 (2! )ril (e, ") dV N
/ drrd(z, x') ’ / drrd(z, x') ’ / drrd(z, z’) ’
where D, H, and A are from (1), (14), and (18)?
X X X

(20)

The question is a simple one: generating from a generation yields zero, 1 = 0 (as well as 99 = 0).
We say that generations are sterile. For example,

lx) Ei/(w’)ri],(w, w’)dv/\/

= kyilp = 21
/ 7o) 0, or {Filp=0 (21)
Indeed, substituting D from (1) into (21) yields
X
// pan(a rl/\ z’ :B//)TI;]/\(:B 2"\ dVN dv _0 (22)
A3 (a!, 2" )dwry(z, z') -

For the proof of Eq. (22) we fix the points = and z”. Then, because of symmetry of space, for
each 2’ exists a &’ such that the vector products rglr];] in the points ' and &’ differ in sign only. So,
integrating over dV”’ yields zero.
We mark sterile quanties by a sign x
Note that ¢ from (7) cannot be used for the purpose of generating since the integral
)z, =) dV N
drrd(z, x')
is a vector but not a vector density. So, there is no sign x in Eq. (7).
It is important that [7, 8]

10t =1 and 10 =20. (24)
It makes possible to decompose a field into sterile and closed parts. If the generation f is possible,
the decomposition of a field j, for example, can be performed by the formula:

j:Z+2+Z:T6j+aTj+J' (25)
This is an analog of Helmholtz’s theorem or Hodge decomposition theorem [9, 10]. Here j is a field
Xe

which is closed and sterile



8 Example of the decomposition

Consider a semi-infinite straight thin wire carrying an electric current I. Let the current density 5¢
be singular in the wire territory. Our aim is to decompose the density into sterile and closed parts,
i.e. into irrotational and solenoidal parts [10],

o= g+ = T+ B (20
We have step by step:
Bjl = — P = 15A(0), (27)
L . I5,(0)7 (e, 2" YAV I (z)
7 411 kE _ 12 o A , L . A
1 n = FOdn = 11104(0) = / drrd(z, x')  Anrd(z) (28)

— ik
g 4k i — ~ i _2/.7/\' Ve (e, 2 )dV 2/z—oo Idllir}]

drrd(z, x') =0  4mrd
z * I 2@ * I xr rz
:{Ijg\zfsz__<R2+R3>’g/\:Hyzg<ﬁ+ﬁ>}’ R:\/$2‘|‘y2- (29)

X
. ) . Ir
i =921 ) = CulH =9, F* = @)

A x _47Tr3(:13)

+ I - (semiaxis z). (30)

Eq.26

Figure 10: The decomposition

The fact is that Curl H is singular at the semiaxis z. Hence, the closed part of 5% (30) consists
of radial tubes coming up to the point z = 0 and the semiaxis z going away to infinity.

9 The conjugation

In a metric space there is a relations between contra- and covariant tensors of the same valence
(with the same number of indices). For example, the metric tensor g;; associates a tensor X* with
the tensor X,,, = Xijgimgjn. This process is called the lowering of indices. In this case the kernel
character is preserved.

In the electromagnetism a slightly different process is used. We call this process the conjugation.
The conjugation establishes a one-to-one correspondence between forms and contravariant tensor

9



densities. This process uses the metric tensor densities g/; = gi;/,/g, or gi = gij\/g/\. It appears
that the electromagnetic fields are conjugated in pairs:

E; = Dig};, Di=Eyg/’ Ba=Hlggu, H) =DBgig". (31)

Conjugating of electromagnetic fields mostly changes the kernel characters. For brevity, we des-
ignate conjugating by the star x.

E; =+«(D%), D! =x(E;), By =x*(H), H'=4«(By). (32)

Our star operator is involute: »x = 1. It differs from Hodge operator [11, 12, 9, 10] mainly
because the Hodge operator, *, implies a dualisation. For example,

*(Bi) = Big)l el = D (33)

Here €}, is the absolute antisimmetric tensor density and Dy is a covariant antisymmetric tensor.
It is remarkable that conjugating transforms sterile fields to closed fields and back [7, 8]. For
example,

E; =*(D%), D\ =*(E), éfﬂl = *(Bir), DBix = *(lzfil)a AL =+(A) (34)

(by tradition, the kernel character A is preserved).
As a sample of a proof we presented here the equality

ZB/) .p/\/(x/)dv/\/ B

i 0. 35
:13/) gk] A ( )

T 7“1/.\(:137
039D = / A T

It holds by virtue of the simple identity 9;(gwir’/r®) = 0.
Figure 11 represents a geometrical sense of the conjugation.

Figure 11: The conjugation

The conjugation changes a geometric representation of fields essentially: closed bisurfaces of E
are converted into radial D-tubes and back, radial bisurfaces of H are converted into ring-shaped

X X
B-tubes and back.

The conjugation changes the orientation of a geometric quantity.
The conjugation permits to differentiate the field repeatedly. For example (without indexes),

p=0x0¢, j=0x0A. (36)
These chains of fields may be depicted as follows,

pn Q%J:Jiksb, .Z.i\'_fji/&?jll_él' (37)

10



The simbol - means that, e.g., pr 1s a boundary of Df\ or A;is afilling of B
X X L)

These chains may be extended in both directions. In this case new fields will appear. For example,
B=0%0x0x0H, o Be i FHY BaF oA, AL E HEL L (38)
[ X ° X L4 X L4 X

The same chains may be created by the use of generating. For example, instead of (38) we can
get . .
T*T*T*TB:Hv Bkl—>]“]l/\%H%,B]l%Al,é{l/\%'];[lf (39)

The simbol — means here that, e.g., B ; generats 7 ;, or Al/\ 1s a source of Hl/(“
L) X ] X

A pair, e.g., (Df\, E;) is regular if the first and the second element of the pair can be a source and
a filling. A pair (pa, @) is degenerate because dp, and f¢ are nonsense. A regular pair (D}, E;)
X °
is a pure pair. A regular pair (D}, E;) is a pure pair, complementary to the previous pair. If all
L4 X

admissible operation (the differentiation and the integration) on both elements of a pair yield zero,
the pair is an endpair, because the chain of fields ends at the pair. For example,

0F g pn=2F BY Bi={ey} b b a=(+3))/2 b DI = {2/6,5°/6},...  (40)

Here x means a conjugate closure, and kernel characters are preserved when conjugating.
A regular endpair generates two chains of fields. For example:

0F Jh di={pat b d dr=ay b A% 45 ={Py/4+ 912,097 /4 +2°/12} £ (41)

Xe
0k g4 Ji={yz}t 07, May = —2*/2+y%/2 4, Al ={-y*/6,—2®/6} b ... (42)
Xe Xe L4 L4

The conjugation makes it possible to express the operator V2 = ¢“9;d; in terms of the exterior
derivatives and the divergence. It appears that [7, 8]

V20 = (—1P(x0* 8 — 0« 0x) &, V2, = (=1)P T (x0% 8 — O x Ox)x,. (43)

Here & and &, designate a form of the degree p and a contravariant density of valence p, respectively.
For example (p = 1),

V2Ai= —%x0x0A; = —ji, VIAL =+0x0 A" =j', VAL = —0x0x AL = —j". (44)
X X X X X [ [ °

X

Eqs. (43) differ from a standard definition of the Laplace-dePham operator A = dd + d [13, p.
153], [12] because of using the star operator x instead of the Hodge asterisk operator .

The symbol - separates a filling from its boundary in the expressions (41), (42). We will say that
the operator V? convert an element of a pure pair into its “second boundary”, sometimes changing
the sign. If the second boundaries of two mutually complementary pairs are an endpair, the sum of
the complementary pair is a harmonic pair. For example, the use of Aj and éj from (41), (42) gives

VAA; = V(4 + 45) = V({&y /4 + y*/12,0y° [4 + 2°/12} + {~y°/6, —2°/6})

= V{zy/4 — y* /12, 2y* /4 — 2*/12} = {0,0}. (45)

So, in spite of [14, 5.7-3], [15, (4.35)] a harmonic form can be decomposed into solenoidal and
irrotational parts (if the constraint of a compact Riemannian manifold is removed).

11



Conclusion

It 1s not uncommon today for an education to ignore all but the simplest geometrical ideas, despite
the fact that students are encouraged to develop mental ‘pictures’ and ‘intuition’ appropriate to
physical phenomena. This paper aims to improve the situation.
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