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We calculate absorption of a circularly polarized light beam without an azimuth phase structure in a 

dielectric in the frame of the standard electrodynamics. A transfer of energy, momentum, and angular 
momentum from the beam to the dielectric is calculated. The calculation shows, in particular, that the 
angular momentum flux in the beam equals to two power of the beam divided by frequency. This 
result contradicts another part of the electrodynamics, which predicts the flux equals to power of the 
beam divided by frequency. In addition we show that this part of the electrodynamics contradicts the 
classical Beth’s experiment. Our inference is: the electrodynamics is incomplete. To correct the 
electrodynamics, we introduce a spin tensor into the electrodynamics. The corrected electrodynamics 
is in accordance with our calculation and with the Beth’s experiment.  
Results of R. Loudon (PRA, 68, 013806) and A. Bishop et al. (PRL, 92, 198104) are mentioned. 
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1. Problem statement 

 
Physicists recognize that circularly polarized light carries an angular momentum since the 19th century 

[1]. The angular momentum is absorbed if an absorbent absorbs the light no matter what nature of the absorbent. 
R. Feynman explained popularly a mechanism of the absorption using a circularly polarized plane wave as an 
example [2]. He proved that the ratio of the angular momentum flux density to the power density in such a wave 
was . He recognized this angular momentum as spin of the wave.  ω/1

Now physicists can calculate the power density in an electromagnetic field. It is a component of the 
Maxwell energy-momentum tensor or of the Poynting vector BE× ,  (we set 2/2/ 22 BE + 100 =µ=ε ). 
However, they cannot calculate the angular momentum flux density because the modern electrodynamics does 
not know a spin tensor. And what is more, because of this inability, physicists claim that the angular momentum 
flux density in a circularly polarized plane wave is zero in direct contradiction to the quantum theory and to the 
Feynman’s reasoning. 

This claim is a corollary of a standard expression for a total angular momentum J [3]. In Maxwell’s theory 
the Poynting vector  is interpreted as the density of momentum of the field. This is considered to be a 
reason that a total angular momentum relative to a point O or to an axis is defined as 

BE×

∫ ××=
V

dV)( BErJ ,                                                       (1.1) 

where r is the distance from O, and V is the volume of a slice of the beam.  
According to this definition, only a beam can carry an angular momentum because only in a wave of finite 

transverse extent, the E and B fields have a component parallel to the wave vector (the field lines are closed 
loops) and the energy flow has components perpendicular to the wave vector. This circulating energy flow in 
the wave implies the existence of angular momentum, whose direction is along the direction of propagation, and  

ω= /UJ z                                                            (1.2) 
in the case of a circularly polarized beam without an azimuth phase structure (here U is the energy of the slice of 
the beam) [3, 4]. This angular momentum is recognized as spin of the beam [5]. 

If the light gets through a doubly refracting object, which reverses the circularly polarization of the light in 
handedness, the object absorbs the double angular momentum of the incident light. So, a circularly polarized 
light passing through an isotropic absorbent or a doubly refracting medium exerts a moment of force, i.e. a 



torque τ  on the medium. This torque arises due to the conservation law of angular momentum and should be 
equal to the angular momentum flux into the medium. So, according to (1.2), 

ω=τ /P                                                                         (1.3) 
where P  is the power of the absorbed beam. 

Nevertheless we have reasons to doubt Eqns. (1.1) - (1.3) and the recognition that (1.1) is spin. To verify 
the statements (1.1), (1.2) we consider absorption of the beam by semi-infinite dielectric. We find that the 
dielectric absorbs twice as much as (1.1), (1.2), i.e. 

ω=ω=τ /2,/2 UJ zP .                                                            (1.4) 
Thus we find that a circularly polarized light beam without an azimuth phase structure carries the double 
angular momentum compared with the prediction of the standard electrodynamics according to eqn. (1.1). 

We argue that when an electromagnetic wave passes through a dielectric, the electric field polarizes the 
dielectric. The polarization and time derivative of the polarization, i.e. the displacement current, are 

PjEP t∂=−ε= ,)1( .                                                        (1.5) 
These allow us to calculate the torque on the absorbing dielectric using a standard formula [see, for example, [6] 
eqns. (5.1) and (7.18)] 

∫ ×+××+∇⋅×=τ dV])()([ EPBjrEPr .                                           (1.6) 
Here  is the total Lorentz force per unit volume (see, for example, [7]), and  is the torque 
on electric dipoles per unit volume [8]. Note that the volume density of torque, i.e. the integrand  

BjEP ×+∇⋅ )( EP×

EPBjrEPr ×+××+∇⋅×=τ )()(/ dVd ,                                           (1.7) 
consists of two part:  

(i) Two first terms in (1.7), 
)()( BjrEPr ××+∇⋅× ,                                       (1.8) 

equal to zero in the case of a plane wave and near the axis of a beam. In the case of a wide beam, they are 
presented only near the wall of the beam. Simmonds and Guttmann wrote: “The skin region is the only one in 
which the z-component of angular momentum does not vanish” [9]. We name these terms wall terms, 

∫ ××+∇⋅×=τ dV
w

)]()([ BjrEPr .                                           (1.9) 

The electric contribution to the total Lorentz force, i.e. the Coulomb force acting on dipoles, EP )( ∇⋅ , is not a 
volume force [see. (2.11)]. In reality, this force acts only on a surface bound charge σ  of the dielectric because 
the average macroscopic volume bound charge density is zero (as it always is for neutral linear dielectrics). So, 
we name the first term in (1.6) a surface torque, 

∫ ∇⋅×=τ dV
s

EPr )( ,                                               (1.10) 

and we name the second term in (1.6) a magnetic torque, 

∫ ××=τ dV
B

)( Bjr .                                                 (1.11) 

So, 

Bsw
τ+τ=τ                                                                 (1.12) 

(ii) The last term in (1.7), 
EP× ,                                                  (1.13) 

presents a volume torque inside the beam or in the plain wave. We name this term an electric torque, 

∫ ×=τ dV
E

EP .                                                   (1.14) 

So, the total torque, 

EBsEw
τ+τ+τ=τ+τ=τ .                                                                (1.15) 

Now we can present our calculation. 
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2. Torque 
 
We use paraxial beams of light [4, 10, 11], 

,),()](1)][(exp[ EBzyxE
(((

(
((

kiui
k

itzki yx −=ρ∂−∂++−=    κ+η=ε=+=ρ ikkyx
(((

,, 2222 .       (2.1) 

The symbol ‘breve’ marks complex vectors and numbers excepting  i. k
(

is the complex wave number, and ε(  is 
the permittivity. For short, we set speed of light in vacuum, 1=c , and the frequency, 1=ω .  

A profile of the beam (2.1) may be Gaussian [11], 
wwu //2}/exp{ 22 πρ−= ,    ,                                   (2.2) 1>>kw

but it doesn't matter. We use the cylindrical coordinates z,,φρ  
22,sin,cos yxyx +=== ρφρφρ                                  (2.3) 

with the metric 
2222222 /1,,1,,1, ρρρφρρ φφ

φφρρ =====++= ∧ gggggdzdddl zz                       (2.4) 
Square root of determinant of the metric tensor is a scalar density of weight 1+ . Gothic symbols are usually 
applied to denote tensor densities. We shall, instead, mark the density with the symbol ‘wedge’ at the level of 
bottom indices for a density of weight  and at the level of top indices for a density of weight 1+ 1− . A volume 
element and a surface element are densities of weight 1− ,  ,  as well as the absolute 
antisymmetric density , which equals to , or 0. 

,dzdddV φρ=∧ φρ=∧ ddda
∧
ijke 1±

 The coordinate transformation for the covariant components of the vectors E, B in (2.1) gives [12] 

.),())]((exp[
→→ρ→→→→

−=ρ∂+φρ+ρφ+−= EkiBu
k
izitzkiE

(((
(

((
                                    (2.5) 

The arrow placed under a symbol means a covariant vector, or a covariant coordinate vector. 
 If a beam of the type (2.5) with 1=k

(
 for 0<z , 

.),())]((exp[ 111 →→ρ→→→→
−=ρ∂+φρ+ρφ+−= EiBuizitziE

(((
                                    (2.6) 

impinges normally on a surface of a dielectric which is characterized by k
(

, the beam divides into a reflected 
part (for ) 0<z

222 ),())]((exp[
1
1

→→ρ→→→→
=ρ∂−φρ+ρφ+−−

+
−

= EiBuizitzi
k
kE

((
(

(
(

                                    (2.7) 

and a transmitted part (for ) 0>z

333 ),())]((exp[
1

2
→→ρ→→→→

−=ρ∂+φρ+ρφ+−
+

= EkiBu
k
izitzki

k
E

(((
(

(
(

(
                                    (2.8) 

in accordance with the reflected and the transmission coefficients 
k

T
k
kR (

(
(

(
(

+
=

+
−

=
1

2,
1
1 . We set  

∫ =ρπρ 122 du                                                         (2.9) 
(we do not write a dimension), so an average power that enters the dielectric is  

|||,|,
21
41 2

22 TTRR
k

TR
((

==
+η+
η

=η=−=P ,    kk =||
(

.                                     (2.10) 

Now we transform Eqn. (1.10) of z-component of the surface torque, 

∫ ∫∫ φφφφ ρσ=ρ−ε=ρ∂−ε=∂−ερ=τ zi
ii

ii
i

zs
daEdaEEdVEEdVEE )1()()1()1( ∫                       (2.11) 

The surface charge density  is obtained by the use of -components from (2.6) – (2.8), σ zE
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)()](exp[
)1(

)1(2][ 0213 ρ∂φ+−
+

ε−
=−−=σ ρ= uti

kk
iEEE zzzz ((

((((( .                                      (2.12) 

Substituting (2.12) and  from (2.8) into (2.11) yields the time average surface torque  φ3E

∫ = φ =φρσℜρ=τ
0 3 2/}{

zs
ddE(

)21(
}1(2)(

)21(
})1{(2

22

2
22

22 kk
kdu

kk
k

+η+
−η

=ρ∂ρ
+η+
ε−ℜπ

∫ ρ

(
                  (2.13) 

(the over lines mark complex conjugate complex numbers). 
The time average magnetic torque (1.11) equals to the integral of 

2/})({ 3333
∧

∧ρρ −ρℜ=τ dVgBjBjd zzzB

((
                                                  (2.14) 

over the dielectric . Substituting )0( >z zzz EkiBEkiBEE 333333 ,,, == ρρρ

((
 from (2.8) into (2.14) and integrating 

with respect to φ  yields 

dzdEEEEki ztztzB
ρ∂−∂−εℜρπ=τ ∫ ρρ )}()1{( 3333

2 ((( dzdzu
kk

ki
ρκ−∂ρ

+η+
−εℜπη

= ∫ ρ )2exp()(
)21(
})1{(4 22

22

(
.       (2.15) 

Integrating with respect to z and, by parts, with respect to ρ  yields [12] 

)21(
)1(2

22

2

kk
k

zB +η+
+η

=τ .                                                           (2.16) 

Calculating of the electric torque (1.14) yields: 

∫ +η+
η

=φρ−ℜ=τ ∧ρφ
∧ρφφρ 233 21

42/)()(
k

dzddeEPEP zz

E

((
                                 (2.17) 

It is remarkable that the sum of the surface part (2.13) and the magnetic part (2.16) of the total torque τ  
equals to the electric part (2.17) of the torque  

EBs kkk
k

kk
k

τ=
+η+
η

=
+η+
+η

+
+η+
−η

=τ+τ 222

2

22

2

21
4

)21(
)1(2

)21(
)1(2 .                        (2.18) 

So, the total torque that is experienced by our dielectric equals to the double quantity  

221
8

kEBs +η+
η

=τ+τ+τ=τ ,                                                  (34) 

and eqn. (2.10) gives P2=τ , i.e. we arrive to eqn. (1.4),  
ωτ /2P= . 

instead of (1.3).  
Sorry, this result does not coincide with the value and the division of the torque in [6] and with the result 

of [13].  
Hereby we show that eqns. (1.1) - (1.3), which are a part of the standard electrodynamics, contradict the 

calculation of angular momentum in the frame of the standard electrodynamics because the angular momentum 
flux according to (1.1) is half the torque acting on the absorber. 

In view of this result, we undertake another verification of the statements (1.1) - (1.3). We apply Eq. (1.1) 
to the classical Beth’s experiment [14] and immediately find that the statement (1.1) predicts zero result of the 
experiment [15]. The point is the circularly polarized beam, which exerts a torque on a doubly refracting plate in 
the Beth’s experiment, passes through the plate there and back. Therefore the Poynting vector BE×  is 
obviously zero in the experiment because the passed beam is added with the reflected one. So, Eq. (1.1) yields 
zero (see the appendix 1).  
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3. Pressure 
 
In this section we use our technique to calculate pressure acting on the dielectric from the beam. The 

pressure can be readily obtained as a component of the Maxwell tensor (density), , by the use of the 
summary field in vacuum  

zzT∧

2121 ,
→→→→→→

+=+= BBBEEE VV

((((((
:                                              (3.1) 

=−++−+=>< ϕρϕρ∧<∧ 4/)(| 222222
0 VzVVVzVVz

zz BBBEEEgT  .           (3.2) )1](2/)([ 222 Ruu +∂−ρ ρ

Integration over the complete cross section with use of the Gaussian beam waist  gives: w

∫ =+−=φρ+∂−ρ= ρ< )1)(/21()1](2/)([| 22222
0 RwddRuuF z 2

22
2

21
)1(2)/21(

k
w

+η+
κ++η

− .         (3.3) 

For a wide beam, , this expression reduces to that for a plane wave and coincides with eqn. (7.1) from 
[6] in spite of the eqn. (7.1) is obtained for a beam of finite transverse extent. The force (3.3) is less than that for 
a plane wave because of -components of the E and B fields (the field lines are closed loops). These 
components give rise to a negative pressure. 

∞→w

z

Pressure acting on the dielectric under its surface can be readily obtained as a component of the Maxwell 
tensor by the use of (2.8) instead of (3.1): 

4/)2exp()(| 2
3

2
3

2
3

2
3

2
3

2
30 zBBBEEEgT zzz

zz κ−−++−+=>< ϕρϕρ∧>∧  

)2exp()1](2/)([ 2222 zRkuu κ−+∂−ρ= ρ .                                                 (3.4) 
It is seen that the flux density of momentum (3.4) decreases with . Accordingly, a force density acts on the 
dielectric, 

z

)2exp(
21

)1(2]2/)([2| 2

22
222

0 z
k

kuuTf z
zz

z
z κ−

+η+
κ++η

∂−κρ=><−∂= ρ>∧∧ .                              (3.5) 

A resulting force  

∫ =+−=φρ+∂−ρ= ρ> )1)(/21()1](2/)([| 2222222
0 RwkddRkuuF z 2

22
22

21
)1(2)/21(

k
wk

+η+
κ++η

−         (3.6) 

acting on the dielectric at  exceeds the force (3.3) acting from vacuum by a small surface force  0>z

)21(
)1)(1(4)1(21|| 222

2222
2

22

2

00 kwk
R

wk
kFF zz +η+

κ++ηκ+−η
=+

−
=− <>                        (3.7) 

directed against the -direction and acting near the beam wall. If ignoring the wall effect, the surface force is 
zero because of continuity of E and B field at 

z
0=z . 

Thus the force (3.3) acting on the dielectric from vacuum is divided into the small surface part (3.7) and 
the bulk part (3.6): 

=
κ++η
κ++η

−= 22

22
2

)1(
)1(2)/21( wF +

κ++η
κ++ηκ+−η

−

surface

wk ])1[(
)1)(1(4

2222

2222
bulk

wk 22

22
22

)1(
)1(2)/21(

κ++η
κ++η

− .       (3.8) 

This division is not coincided with eqns (7.10), (8.1) from [6] even if ∞→w : 

22

22

)1(
)1(2

κ++η
κ++η  = 

surface

+
κ++η
κ+−η

22

22

)1(
)1(2

bulk

22)1(
4

κ++η
,                               (7.10) 

The surface force (3.7) can be readily obtained also by the use of the surface charge (2.12). The z-
component of the time averaged surface force density  acts on this charge and directs against the -

direction: 
∧a

F z
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22242
3

2 4/)()1(4/)1( kuTkEgF za ρ∧∧ ∂−ρ=−ε= .                                                (3.9) 

Integration over the complete cross section with the use of  gives eqn. (3.7).  )1(2)1( 222 RTk +=+
 

4. Appendix 1. The Beth’s experiment [15] 
 
We show that the angular momentum flux into the Beth’s doubly refracting plate is zero, according to 

(1.1).  
In the Beth’s experiment a circularly polarized light beam (power =P 80 mW, 1.2 m, 

s
=λ µ

15106.1 ⋅=ω -1) passes through the half-wave plate, then it is reflected and passes twice through the quarter-
wave plate, and then returns through the half-wave plate. The torque exerting on the half-wave plate is 20 dyne 
cm. This result is in accordance with the formula  

ω=τ /4P .                                                                (4.1) 
However, let us calculate the Poynting vector BE×  in the Beth’s experiment. We start from expression (2.6) 
for the Beth’s circularly polarized beam.  

When a mirror reflects the beam (2.6), signs preceding  and the sign in the formula for z B
(

are changed. 
But because of the quarter-wave plate a helicity of the beam is conserved, and so signs preceding φ is changed 
and the sign in the formula for B

(
is changed once more. Thus the reflected beam in the Beth experiment is 

expressed by the formula (we use index 4 for the reflected beam) 
444 ),())]((exp[

→→ρ→→→→
−=ρ∂−φρ−ρφ−−−= EiBuizitziE

(((
.                                    (4.2) 

Let us calculate the Maxwell energy-momentum tensor 
4/αβ

αβ
λµµν

αν
λαλµ +−= FFgFFgT                                            (4.3) 

for the total field 4141 ,
→→→→→→

+=+= BBBEEE
((((((

. 

A signature of the metric tensor  in Eq. (4.3) is λαg )( −−−+ . νµµν FF −= ,  is the field 
strength tensor. The sense of its components is 

νβµα
αβ

µν ggFF =

zjieBBeBBBFBFEFEF ijk
ij

k
ijk

ij
kijij

ijij
iti

iti ,,,...,,,,,,, φρ===−=−==−= ∧
∧∧

∧ .            (4.4) 
For example,  

ρφ
φφρφ

ρφ
φφρφ

φ
φφφ

φ
φφφ −=−====−= BgBFgFEgEFgF t

t , .                           (4.5) 

 The component  is the density of an orbital mass-energy flux, i.e. the φ
∧
tT φ -component of the Poynting 

vector; infinitesimal time averaged mass 
dtdzdTdtdaTdmdp ttt ρ>=<>=<= φ

∧
∧
φ

φ
∧                                   (4.6) 

passes through the surface element  during . The component  is the volume density of 
an orbital momentum; infinitesimal time averaged momentum 

ρ=∧
φ dzdda dt φ

∧
φ
∧ = tt TT

dzddTdp t φρ>=< φ
∧

φ                                                    (4.7) 
is contained in the volume element . Using (4.3) yields zero: dzdd φρ

02/)])(())([( 41414141 =++−++ℜ>=>=<< ρρρρ
φ

∧
φ
∧ zzzz

tt BBEEBBEETT
((((

.            (4.8) 
This means that no mass rotates in the Beth experiment. 
 The component zT φ  is the flux density of an orbital momentum; infinitesimal time averaged momentum  ∧

dtddTdtdaTdp z
z

z φρ>=<>=< φ
∧

∧φ
∧

φ                                   (4.9) 
passes through the surface element  during dt . This mean that an infinitesimal torque  φρ=∧ dddaz

φρρ>=<ρ====τ φ
∧∧

φ
∧

ρφ∧
ρφ

ρφ
∧

∧
ρφ ddTdtgdpdtgdLedtdLedtdLd z

zzzz
2////                 (4.10) 
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acts on the surface element . But φρ=∧ dddaz

02/)])(())([( 41414141 =ρ+++++−ℜ>=< φφφφ
φ
∧ zzzz

z BBBBEEEET
((((

.                (4.11) 
So, no torque acts on the Beth plate according to the standard electrodynamics. Why then the plate experiences 
the torque (4.1)? 

 
5. Appendix 2. Spin tensor [15, 16] 

We see that the Maxwell electrodynamics provides the deficit of angular momentum in the absorbed 
beam and the lack of the angular momentum flux into the Beth’s plate. So, the electrodynamics is not complete. 
We introduce a spin tensor in the electrodynamics. 

The standard classical electrodynamics starts from the free field canonical Lagrangian,  
4/µν

µν−= FF
c

L ,    ][2 νµµν ∂= AF .                                                (5.1) 

Using this Lagrangian, by the Lagrange formalism physicists obtain the canonical energy-momentum tensor 

4/
)(

αβ
αβ

λµµα
α

λλµ

αµ
α

λλµ +−∂=−
∂∂

∂
∂= FFgFAg

A
AT

c

c

c
L

L
,                      (5.2) 

and the canonical total angular momentum tensor 
λµννµλλµν Υ+=

ccc
TxJ ][2                                                                                  (5.3) 

where 

νµλ

αν

µ
α

λλµν −=
∂∂

∂
δ−=Υ ][][ 2

)(
2 FA

A
A c

c

L
,                                                  (5.4) 

is the canonical spin tensor.  
Then physicists accomplish a Belinfante-Rosenfeld procedure [17, 18]. They add specific terms to the 

canonical tensors and arrive to the standard energy-momentum tensor , the standard total angular 
momentum tensor , and the standard spin tensor , which is zero, 

λµΘ
λµν

st
J λµνΥ

st

)(4/2/~ µνλ
ν

αβ
αβ

λµµν
ν

λλµν
ν

λµλµ ∂++−∂=Υ∂−=Θ FAFFgFAT
cc

, 

µνλνλµµνλλµνλµν −=Υ+Υ−Υ=Υ FA
ccc

def

c
2~ ,                         (5.5) 

)~( ][ νκµλ
κ

λµνλµν Υ∂−=
ccst

xJJ ,                                                                                         (5.6) 
νµλλµνλµν Θ−=Υ ][2xJ

stst
0~ ][ =Υ−Υ= νλµλµν

cc
.                                                                  (5.7) 

This means that standard addends  are added to the canonical energy-momentum and spin tensors:  λµνλµ

stst
st ,

,λµλµλµ

stc
tT +=Θ  )(2/~ µνλ

ν
λµν

ν
λµ ∂=Υ−∂= FAt

cst
,                                       (5.8) 

0=+Υ=Υ λµνλµνλµν

stcst
s ,     .                                         (5.9) νµλλµνλµν ][2 FAs

cst
=Υ−=

We use another addends; our addends, 
µνλ

ν
λµ FAt ∂= ,       ,                                                     (5.10) νµλλµν AAs ][2 ∂=

satisfy the equation 
λµν

ν
λµ st ∂=][2                                                                     (5.11) 

and lead to the Maxwell energy-momentum tensor 
4/αβ

αβ
λµµν

ν
λλµλµλµ FFgFFtTT

c
+−=+=                                        (5.12) 
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and a tensor, which is doubled electric part  of the electrodynamics spin tensor , λµνΥ
e

λµνΥ

]||[22 µνλλµνλµνλµν ∂=+Υ=Υ AAs
ce

.                                                 (5.13) 

This result was submitted to “JETP Letters” on May 12, 1998.  
The expression (5.13) was obtained heuristically. It is not final one. The tensor (5.13) is obvious not 

symmetric in the sense of electric - magnetic symmetry. It represents only the electric field, dt∫−= EAE, . A 

true spin tensor of electromagnetic waves must depend symmetrically on the magnetic vector potential  and 
on an electric vector potential  

αA

λµλµν
ν

λµν
αλµνα =Π∂Π=Π Fe , .                                                       (5.14) 

So the spin tensor of electromagnetic waves has the form 
][][ µνλµνλλµνλµνλµν Π∂Π+∂=Υ+Υ=Υ AA

me
,                                         (5.15) 

and the total angular momentum has the form 

∫ Υ+= ν
λµννµλλµ dVTxJ )2( ][ ,  or   ∫∫ Υ+××= dVdV ij0)( BErJ ,                        (5.16) 

instead of (1.1), and the angular momentum (1.1) is an orbital angular momentum rather than spin. 
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example (I show an approximate number of the rejections in parentheses): JETP Lett. (8), JETP (13), TMP (10), 
UFN (9), RPJ (75), AJP (16), EJP (4), EPL (5), IJTP (1), JOSAB (1), PRA (5), PRD (4), PRE (2), PRL (2), APP 
(5), FP (6), PLA (9), OC (5), JPA (4), JPB (1), JMP (6), JOPA (4), JMO (2), CJP (1), OL (4), NJP (5), MPEJ 
(3), arXiv (75).  
 

I am deeply grateful to Professor Robert H. Romer for publishing my question [19] (was submitted on 
Oct. 7, 1999) and to Professor Timo Nieminen for valuable discussions (Newsgroups: sci.physics.electromag). 
Unfortunately, Jan Tobochnik, the present-day Editor of AJP, rejected my papers more than 20 times. 
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