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Abstract 

In this paper using the arithmetic function )(2 ωJ  we prove that there exist infinitely 

many integers n  such that each of consecutive integers 14,,1, ++ nnn L  is 

exactly k  prime factors. 
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We have proved that there exist infinitely many integers n  such that each of 

2,1, ++ nnn  is product of k  distinct primes [1]. In this paper using the arithmetic 

function )(2 ωJ  we prove that there exist infinitely many integers n  such that each 

of consecutive integers 14,,1, ++ nnn L  is exactly k  prime factors. 

Theorem 1. There exist infinitely many integers n  such that each of consecutive 

integers 14,,1, ++ nnn L  is exactly five prime factors. 

Proof.  The first number is  

9677653175648899543051 =m  

and for each of the fifteen integers 14,,2,1,0,1 L=+ iim  as can be seen from the 

factorizations [2]: 

        288019694718110941873331 ⋅⋅⋅=m  

  16150288744454130051152112 ⋅⋅⋅=+= mm  

  27051617130843199736917213 ⋅⋅⋅=+= mm  

  39804431314074961921322314 ⋅⋅⋅=+= mm  

  24721178185477282831713415 ⋅⋅⋅=+= mm  

  5078093634989749291772516 ⋅⋅⋅=+= mm  

  2368709016519939074553617 ⋅⋅⋅=+= mm  

  09706646976112442882222718 ⋅⋅⋅=+= mm  

  25149671462264728229149819 ⋅⋅⋅=+= mm  

 932029542127166412803329110 ⋅⋅⋅=+= mm  

 3315266766163487129633110111 ⋅⋅⋅=+= mm  

 8388265879244497715252211112 ⋅⋅⋅=+= mm  

 7911918512116863335117312113 ⋅⋅⋅=+= mm  

 716542072792221330937213114 ⋅⋅⋅=== mm  

 9719146430118760607291914115 ⋅⋅⋅=+= mm  

Suppose that i
i

mm ∏
=

=
15

1

. We define the prime equations 

                 1+= x
m
m

P
i

i                           （1） 

where 15,,2,1 L=i . 
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We have the arithmetic function [3-14] 

,0))(16()(
3

2 ≠−−= ∏
≤

PPJ
P

χω               （2） 

where 15)( −=Pχ  if 11,7,5,3=P ; 14)( −=Pχ  if mP , but ,3≠P  

11,7,5 ; 0)( =Pχ  otherwise, P
P

∏
≤

=
2

ω . 

Since ∞→)(2 ωJ  as ∞→ω , there exist infinitely many integers x  such that 

1521 ,,, PPP L  are all primes. 

We have the asymptotic formula of the number of integers Nx ≤  [3-14] 
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where )1()(
2

−= ∏
≤

P
P

ωφ . 

From (1) we have 111 mmxPmn +== , mxmmxPmn =++=+=+ 111 111  

2m+ ,,1 22
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If 1521 ,,, PPP L  are all primes, then each of consecutive integers ,,1, L+nn  

14+n  is exactly five prime factors. 

Theorem 2. There exist infinitely many integers n  such that each of consecutive 

integers 14,,1, ++ nnn L  is exactly k  prime factors. 

Proof. From theorem 1 we have that each of consecutive integers ,1, 121 += mmm  

14, 115 += mmL  is exactly 1−k  prime factors. 

Suppose that i
i

mm ∏
=

=
15

1

. We define the prime equations 

1+= x
m
m

P
i

i ,                          （4） 

where 15,,2,1 L=i . 
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We have the arithmetic function [3-14] 
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χω                     （5） 

where 15)( −=Pχ  is 11,7,5,3=P ; 14)( −=Pχ  if mP , but ,3≠P  

11,7,5 ; 0)( =Pχ  otherwise.. 

Since ∞→)(2 ωJ  as ∞→ω , there exist infinitely many integers x  such that 

1521 ,,, PPP L  are all primes. 

We have the asymptotic formula of the number of integers Nx ≤  [3-14] 
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From (4) we have 111 mmxPmn +== , mxmmxPmn =++=+=+ 111 111  
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If 1521 ,,, PPP L  are all primes, then each of consecutive integers ,,1, L+nn  

14+n  is exactly k  prime factors. 
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