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FERMAT'S LAST THEOREM states: 
 
        There can be no non-zero integer solution for n>2 to the equation 
 
(1)     an  +  bn  =  cn 
 
Step 1 
 Restate the problem as follows: 
 
        For x, i, n and f(x,i) all non-zero integers and i<x there  is  no 
        solution  for n>2 to  the  equation 
 
(2)     xn = [x-i]n + [f(x,i)]n 
 
That is, make the following substitutions in equation (1): 
 
 
 
       xn = cn       [x-i]n = an       [f(x,i)]n = bn 

 Clearly there is no difficulty with the xn term nor the [x-i]n term.  
Both are integers and perfect nth powers of integers.  The issue now is: 
 
        Can f(x,i) be a non-zero integer for n>2 and equation (2) still valid ? 
 
Step 2 
 The 1st constraint on bn:   it must be the difference of cn and an. 
 
(3)  bn = [f(x,i)]n                                  
 
        = xn - [x-i]n                       [Solving 
  
 
                                           equation (2)] 

        = xn - [xn - n·xn-1·i + ... ± in]   [Binomial 
  
 
                                           expansion] 

        = n·xn-1·i - ... ± in 
 
Step 3 
 The 2nd constraint on bn:   it must be a perfect nth power. 
 
(4)  bn = [x-j]n = [x-j]1·[x-j]2·[x-j]3· ··· ·[x-j]n  
          where:  b = x-j  (just as a = x-i) 
                  j is a non-zero integer, j<x 
 
Step 4 
 These two constraints are simultaneous.  They are for the same bn.  
Therefore the two expressions must be identical; they must always 
simultaneously deliver the same value of bn. 
 
 The order of Step 2, equation (3) is one less than the order of Step 3, 
equation (4).  To compare the two expressions as an identity their order must  
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be the same.  That is accomplished by removing one factor of b from each of 
equations (3) and (4), as follows. 
 
( 5)  b

n = n·xn-1·i - ... ± in                [equation 3] 
               ┌             n-1┐ n·i i
        = ─  m·│xn-1 - ... ± ────│ ── ·
           m      └               n ┘ 
         └─┬─┘ └──────────┬──────────┘ 
            b              b

n-1 

(The parameter m is necessary because the quantity, n·i, which 
factored out normalizes the expressing, is not necessarily equal to b.) 

 
(6)  bn = [x-j]  · [x-j] ···[x-j]             [equation 4] 1 2 n
          └──┬──┘  └───────┬───────┘ 
 
 
            b           bn-1 

        = [x-j]  · m·[[x-k] ·[x-k] · ··· ·[x-k] ] 1 2 3   n
          └──┬──┘ └──────────────┬───────────────┘ 
              b                  bn-1 

(The m here is for identity to be possible -- for the coefficient of the 
xn-1 term in the two expressions to be able to be equal, when m≠1.) 

 
Step 5 
 Now, expression (5) and expression (6) must yield the same value for 
bn for all values of x.  To establish that condition we will require, for 
convenience rather than the entire expressions, that [bn-1/m] in each 
expression yield the same value for all values of x.  The two expressions are 
(using the binomial theorem expansion formula):  in expression (5) 
 
(7)         [n-1]         [n-1][n-2]                in-1  
     xn-1 - ─────·xn-2i + ──────────·xn-3i2 - ... ± ────  
           2·1             3·2·1                    n    

 
and in expression (6) 
 
(8)     [n-1]     [n-1][n-2]                    
     xn-1 - ─────·xn-2k1 + ──────────·xn-3k2 - ... ± kn-1 
 
 
             +1               2·1 

 Equating the pair of terms of zero order in equations (7) and (8): 
 
(9)  n-1                       i    
     ±        =         ± kn-1 ──── 
         n   
            i    
      ───  k = ───
           n-1  n 

            √ 

 The [n-1]th root of n is irrational for n>2.  Therefore, for n>2, 
k is irrational and b is irrational and cannot be an integer, which proves the 
theorem. 
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 However, k in expression (8) is a function of x.  The only values of 
k that are able to make the expression for bn-1 in the horizontal bracket to 
the right in the second line of expression (6) actually be equal to bn-1 are as 
follows: 

 



(10)     ┌    n 1 ┐ ┌ b  ┐ /     
     k = │x - [n-1]│     [where b is also│───│   
         └    └n·i┘       ┘      a function of x] 

w hich can readily be verified by substitution, that is 

(11) ── k 1                   ┌    ┌──── ───────┐┐n-
                      │    ┌     ┐│ ┌  ┐1/     
                   │    │    │ n │  [n-1]││ n·i  b  

     m·[x-k]n-1 = ───·│x - │x - │───│       ││ 
                   b  │    │    n·i ││ │ │       

└   ┘                      │    └           ┘│ 
                      └                      ┘ 

             ┌   ┐n-1 ┌  ┐1/     
          ││ n │  [n-1]│       n n·i  b  n·i    b
       = ───·││───│       │  =  ─── · n-1 ───  =  b
          b  │ n·i │      b    n·i │ │       
             └└   ┘       ┘ 

 The problem with k being a function of x is that the apparent terms 
of given orders of x and their coefficients are not necessarily as they appear in 
expression (8) when expression (9) is substituted for k in expression (8).  
However, if the term coefficients experience no net change from the 
substitution, then the comparison of any pair of coefficients is valid even 
though k = f(x).  That is exactly the situation in the present case (and may 
relate to why the theorem withstood proof for three centuries) as follows. 
 
 To show this in an overall general form would be too algebraically 
complex to contemplate.  The pattern can be developed with two examples. 
 

Example #1:  n = 2
Expression Nr 
As on Page 2 
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(5)  
 
 
 
 

(6)  
 

 
 
(7) 

 
(8) 

 
  
(10) Page 3  

 
 
 
 
 
 
Substituting (10) 
 For the k in (8)  

 gives (8) ≡ (7) 
 

 
Content

 
bn = 2·x·i - i2 

     2·i         i  
│ │
┌ ┐

   = ─── · m· x - -  
    m      └    2┘    

 

bn = [x-j]·[x-j] 
 
   = [x-j] · m·[x-k] 
 
 
[bn-1/m] = x - 

i/2 
 
[bn-1/m] = x - k 
 
    ┌   2 1/1┐ ┌ b ┐
k = │x-    │ │───│
  └  └2·i┘   ┘   

 
    ┌  2 1/1┐ ┌2·x·i-i ┐
  = │x-    │ │────────│

└  2·i ┘ ┘     └        
                   

  = i/2 

┌      ┐ n-1  x - i/2 │b /m│ =└      ┘ 

 



Example #2:  n = 3
Expression Nr 
As on Page 2 
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(5) 
 
 
 
 
 

(6) 
 
 

 
 
(7) 

 
(8) 

 
 
 
(10) Page 3 

 
 
 
 
 
 
 
Substituting (10) 
 For the k in (8)  

 gives (8) ≡ (7) 

 
Content

 
b  = 3n ·x2·i - 3·x·i2 + i3 
      

┌ 2 ┐     3·i                 i   
│ 2 │   = ─── · m· x  - x·i + ───  

      m      └            3 ┘  
 

bn = [x-j]·[x-j]·[x-j] 
 
   = [x-j] · m·[x-k]·[x-k] 
 
 
[bn-1/m] = x

2 - x·i + i2/3 
 
[bn-1/m] = x

2 - 2·k·x + k2 
 
    ┌   3 1/2┐ ┌ b ┐
k = │x-    │ │───│
    └  └3·i┘   ┘ 
 
    ┌  2 2 3 1/2┐ ┌3·x ·i-3·x·i +i ┐
  = │x-    │ │────────────────│
    └  └      3·i       ┘   ┘ 
                   1/                
  = x-[x2-x·i+i2/3]  
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┌      ┐ n-1 2 - x·i + i2/3 │b /m│ = x└      ┘ 
 
 This pattern persists for all positive integer values of n .  Therefore,  
the term coefficients experience no net change from the substitution and the 
comparison of any pair of coefficients is valid even though k = f(x).  
Therefore, expression (9) is valid and expression (9) shows that k, and 
therefore b, are irrational for n>2, which proves the theorem. 
 
 

 


	Fermat's Last Theorem states: 

