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Theoretical reasons and results of the works: Phys. Rev. A68 013806 (2003), Opt. Lett. 22 52 (1997), 
Optics Express 14 6963 (2006), Phys. Rev. Lett. 92 198104 (2004), Phys. Rev. Lett. 91 093602 (2003), 
Phys. Rev. Lett. 88 053601 (2002) prove that the angular momentum flux carried by a circularly polarized 
light beam with plane phase front equals two power of the beam divided by the frequency. This fact 
contradicts the standard electrodynamics, which predicts the beam’s angular momentum flux equals power 
of the beam divided by frequency, and means the electrodynamics is incomplete. To correct the 
electrodynamics, a spin tensor is used.  
 
1. Does electrodynamics’ spin tensor exist? 
As is well known, photons carry spin, energy, momentum and angular momentum that is a moment of the 
momentum relative to a given point or to a given axis. Energy and momentum of electromagnetic waves are 
described by the Maxwell energy-momentum tensor (density) 
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where ,  is the field strength tensor. For example,  is the 

momentum of a waves inside of the volume V, and  is the energy that has flowed through 

the area a in the time . The angular momentum that is a moment of the momentum can be defined as

νµµν FF −= νβµα
αβ

µν ggFF = ∫= V

ii dVTP 0

∫= a i
i dtdaTdW 0

dt 1

∫∫ ××==
VV

jiij dVdVTxL )(2 0][ BEr ,                                          (1.2) 

and this construction is known as an orbital angular momentum. But the modern electrodynamics has no 
describing of spin. Sometimes physicists consider the canonical spin tensor  

νµλ

αν

µ
α

λλµν −=
∂∂

∂
δ−=Υ ][][ 2

)(
2 FA

A
A c

c

L
,                                                  (1.3) 

where  is the canonical Lagrangian, and  is the magnetic vector potential, 4/µν
µν−= FF

c
L λA µννµ =∂ FA ][2 . 

But spin tensor (1.3) is invalid, and physicists eliminate it by the Belinfante-Rosenfeld procedure2,3. As a 
result, the electrodynamics has no spin tensor, or rather the modern classical electrodynamics spin tensor 
equals zero.  

Nevertheless, physicists understand they cannot shut eyes on existence of the electrodynamics spin. 
And they proclaim spin is in the moment of the momentum (1.2). I.e., the moment of momentum represents 
the total angular momentum, orbital angular momentum plus spin:4 – 8  

∫=+=
V

jiijijij dVTxSLJ 0][2 ∫ ××=
V

dV)( BEr ,                             (1.4) 

Contrary to this paradigm, we introduce a spin tensor λµνΥ  into the modern electrodynamics,9 – 12  i.e. 
we complete the electrodynamics by introducing the spin tensor, i.e. we claim the total angular momentum 
consists of the moment of momentum (1.2) and a spin term, i.e. we claim equation (1.4) is wrong, i.e. we 
state the moment of momentum does not contain spin at all: 
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The sense of the spin tensor  is as follows. The component λµνΥ 0ijΥ  is a volume density of spin. This means 
that  is the spin of electromagnetic field inside the spatial element . The component dVdS ijij 0Υ= dV ijkΥ  is 
a flux density of spin flowing in the direction of the  axis. For example, 

 is the z-component of spin flux passing through the surface element 
 per unit time, i.e. the torque acting on the element. The explicit expression for the spin tensor is  
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where  and  are magnetic and electric vector potentials which satisfy λA λΠ µννµ =∂ FA ][2 , 

, where ,  is the field strength tensor of a free 
electromagnetic field. A relation between  and  can be readily obtained in the vector form as follows.  

αβ
µναβνµ −=Π∂ Fe][2 βααβ −= FF νβµα

αβ
µν ggFF =

Π F
If , then . And if , then 0=Ediv Π= curlE HE curl=∂∂ t/ H=∂Π∂ t/ . This reasoning is analogous to the 
common: if , then 0div =B AB curl= . And if EB curl/ −=∂∂ t , then EA −=∂∂ t/ . 

The difference between our statement (1.5) and the common equation (1.4) is verifiable. The cardinal 
question is, what angular momentum flux, i.e. torque τ , does a circularly polarized light beam of power P  
without an azimuth phase structure carry? The common answer, according to (1.4), is  

ω==τ P/dtdJ / ;                                                       (1.7) 
our answer, according to (1.5), is 

ω==τ P/2/ dtdJ .                                                     (1.8) 
Statements (1.5) & (1.8) are also valid in the case of plane waves or a beam which is much larger 

than the particle under action if P  is the power absorbed by the particle. 
To verify our statements (1.5), (1.8), we use the angular momentum conservation law. We have 

calculated the torque acting on a dielectric absorbing the beam. We use the standard formula  

∫ ×+××+∇⋅×=τ dV])()([ EPBjrEPr                                  (1.9) 

[see, for example,7  eqns. (5.1) & (7.18)]. Here EP )1( −ε=  is the polarization, Pj t∂=  is the displacement 
current,  is the moment of the total Lorentz force per unit volume, and )()( BjrEPr ××+∇⋅× EP×  is the 
torque on electric dipoles per unit volume.13  The point is the accurate calculation gives the torque (1.8).12  At 
that, we have had for the first two terms and for the last term 

∫ ××+∇⋅× dV)]()([ BjrEPr ∫ ×= dVEP ω= P/ .                                    (1.10) 
Loudon7 calculated the torque exerted by a light beam on a dielectric as well. He used the formula 

(1.9) as well, and he obtained  

∫ ××+∇⋅× dV)]()([ BjrEPr ω= P/                                     (1.11) 
[see his formulae (7.19) – (7.24)]. But he omitted EP×  term without explanations, and  was his finish 
result for the torque. Taking into account the 

ωP/
EP×  term, he must obtain our result . ωP/2

 
2. Experimental verification 
The work of Simpson at al.14  rather confirms our result (1.5), (1.8) as well. The authors trapped  ~2-µm-
diameter Teflon particles by a  beam of 1l

0pLG =
= λ  = 1064 nm and power P = 25 mW. If the  beam is 

linearly polarized, it carries an orbital angular 
momentum flux of . In this case 
the trapped particles were rotated with the rotational 
rate ~1 Hz. This implies that the torque on the 
particles equaled  (formula 
(3) from,

1l
0pLG =

=

J103.1/ 17−⋅=ωP

J106.18 193 −⋅=Ωπη=τ r
14  here kg/m sec is the viscosity, 
m is the particle radius, and ). 

Because , it was concluded that the 
particles absorbed approx 1.2% of the beam. 
However, this conclusion probably needs to be 
corrected. The point is a Laguerre-Gaussian beam 
can exert a torque on particles not only when 
absorbing, but also when being converted into 
Hermite-Gaussian beams.  

310−=η
610−=r sec/2π=Ω

ω=τ /012.0 P

Allen et al. show that a torque exerts on a 
converter of a Laguerre-Gaussian beam when converting (Fig. 1 from15 ), because the converter change the 
phase difference between the Hermite-Gaussian modes that constitute the Laguerre-Gaussian beam (Fig. 13 
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from16 ). Because the particles had an irregular form, and 
because ~99% of  beam passed through the p
in the experiment, it was very possibly that at least 0.6%
the 1l

0pLG =

1l
0pLG =

= articles 
 of 

=  beam were converted into HG modes. In this 
case, the absorption of 0.6% only, instead of 1.2%, could 
provide the torque J106.1 19−⋅=τ . 

The main point of the Simpson’s experiment14  was a 
cessation of rotating of the particles when the linearly 
polarized  beam became a circularly polarized one 
if the handedness was opposite to the rotation sense. Thus, 
we must conclude that the torque associated with the 
circular polarization equals  because 

1l
0pLG =

=

ω/2P
ω⋅=τ /2006.0 P . In any case, because of the possible 

 conversion, we must conclude that the circular 
polarization is related with an angular momentum flux 

which is larger than P . 

HGLG →

ω/
The recent work17  confirms rather the formula (1.5) as well. In this work a 

linearly polarized  beam of  = 1064 nm and power P = 20 mW rotates a 
trapped particle with the rotational rate 2.4 Hz, and, when circularly polarized, the 
beam rotates the particle with 2.9 Hz. This increase in the angular velocity, 

2l
0pLG =

= λ

∆Ω  = 
2 0.5/sec, causes the corresponding increase in the drag torque acting on the 
rotating particle (formula (3) from
π

17 ): J (here 
m is the particle parameter). On the other hand, the increase in the drag 

torque is provided with change in the degree of circular polarization 

193 102. ⋅112 −=∆Ωπη=τ∆ a
610−=a

σ  of the 
beam as the beam passes through the particle. This change is determined by 
signals of photo-detectors 1 and 2 (see the fragment of Fig. 1 from17  here). 

The point is an 
elliptically polarized beam 
consists of right and left circularly polarized 
constituents. The electrical field may have the form 

2/)]()()[exp( 0Eilirtiikz yxyxE −++ω−= ,     (2.1) 

where 2/0rE  and 2/0lE  are the amplitudes of the 
circularly polarized constituents. The degree of circular 
polarization of the beam is defined as  

22

22

lr
lr

+
−

=σ .                                     (2.2) 

To determine r and l, the authors send the beam to a 
circular polarization detection system consisting of the 

4/λ  plate, the polarizing beam splitter cube, and the 
photo-detectors. The 4/λ  plate converts a circularly 
polarized constituent to a linearly polarized one by 

introducing  phase shift of y-components, i.e. by multiplying the y-components in (2.1) by i. 2/π
2/)]()()[exp(2/)]()()[exp( 00 ElrtiikzEilirtiikz yxyxEyxyxE ++−ω−=→−++ω−= .    (2.3) 

According to Figure (b) from,17  the input polarization is 0.999, and the output polarization is 0.9982 – 
0.0012 = 0.997. I.e.  = 0.002. These results mean that J (here P = 20 mW and 

/sec). So, we have, according to,
σ∆ 19102.0/ −⋅≅ωσ∆ P

15109.1/2 ⋅=λπ=ω c 17  ωσ∆≅τ∆ /6 P  instead of ωσ∆=τ∆ /2 P , 
according to eqn. (1.8), and instead of ωσ∆=τ∆ /P , according to eqn. (1.7). This sizeable polarization 
contribution to the total torque confirms our statement (1.8). 
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We tried to confirm our formula (1.8) by the work,8  but we could not find data in the paper. For 
example, FIG. 2 of the paper shows the angular velocity of a trapped birefringent particle was 

sec/590294 =π⋅=Ω  when the 
output polarization of the beam was 

8.01.09.0 =−=σ , i.e. 2.0=σ∆ , 
but the radius of the particle and the 
power of the beam were not given. 
However, as one can understand 
from the text and from FIG. 3 of the 
paper, the radius was m2.1 µ=r  and 
the power was P = 100 mW. From 
this assumption we get 

ωσ− P/)1( =10-17 J and 
. So, J107.28 173 −⋅=Ωπη=τ r

ωσ∆=τ /7.2 P , which is rather in 
accordance with (1.8). 

 At the same time we were 
puzzled by the fact that “the rotation 
may be stopped by aligning the 4/λ  

plate located before the objective so that the polarization is made linear.” It seems that if a birefringent 
particle converts a circularly polarized beam to partially linear polarized one and is rotated, the particle must 
convert a linearly polarized beam to partially circularly polarized one and be rotated as well. Unfortunately, 
the authors did not measure the degree of output circular polarization when input polarization was linear. 

We are interested in works that show how a particle rotates simultaneously around its own axis (due to 
spin) and around the beam’s axis (due to orbital 
angular momentum). So we consider the paper.18  
As is shown in Fig. 1 of the paper (see a 
reproduction here), a particle of a radius approx 

rotates around its own axis with 
rotational rate  and around the 
beam’s axis with rotational rate  
along a circle of  radius . The beam is 
a high-order  Bessel beam ( ). The 
azimuthal component of the linear momentum 
density, , yields the azimuthal force on 
the particle . If we use the 
Stokes’s law, , for the particle, we 
obtain .  

m1µ=r
sec/18spin =Ω

sec/4.2orbit =Ω
m9.2 µ=R

2J 2=l

Rlu /2ω
RrluF /22πω=φ

rvD πη= 6
22

orbit 6/ Rrlu ηω=Ω
At the same time, the quantity (1.7) for the 

spin torque is . If we use 
formula (3) from [14], , we obtain . So we obtain the ratio 

, but in reality the ratio is 

22 ru σπω=ω=τ P/
spin

38 Ωπη=τ r ru ησω=Ω 8/2
spin

2.38/3/ 22
orbitspin ==ΩΩ rR 5.74.2/18/ orbitspin ==ΩΩ . However, if we use our 

formula (1.8), , instead of (1.7), we obtain ω=τ P/2 4.6/ orbitspin =ΩΩ , instead of 3.2, what confirms our 
theory. 

Authors of the interesting work19  also deal with probe particles, which rotates around their own axises 
and around the beam’s axis. Unfortunately, this work is not quantitative one. Nevertheless, this work 
confirms an extremely sizeable contribution from the circular polarization of a beam. The authors watched a 
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rotation of a calcite fragment around its own axis due to σ  and could not observe this fragment orbiting 
though they used a Laguerre-Gaussian beam of l . )LG(8 8l

op
=
==

 

Conclusions, Notes and Acknowledgements 
This paper conveys new physics. We review existing works concerning electrodynamics spin and 

indicate that existing theory is insufficient to solve spin problems because spin tensor of the modern 
electrodynamics is zero. Then we show how to resolve the difficulty by introducing a true electrodynamics 
spin tensor. Our spin tensor, in particular, doubles a predicted angular momentum of a circularly polarized 
light beam without an azimuth phase structure  

The idea of the classical spin and the concrete expression were rejected more than 350 times by 
scientific journals since the rejection by "JETP Letters" on May 21, 1998." For example (I show an 
approximate number of the rejections in parentheses): JETP Lett. (8), JETP (13), TMP (10), UFN (9), RPJ 
(75), AJP (16), EJP (4), EPL (5), IJTP (1), JOSAA (2), JOSAB (4), PRA (6), PRD (4), PRE (2), PRL (2), 
APP (5), FP (6), PLA (9), OC (5), JPA (4), JPB (1), JMP (6), JOPA (4), JMO (2), CJP (1), OL (5), NJP (5), 
MPEJ (3), arXiv (75). My submission to the 2007 CLEO/QELS Conference was rejected on February 28, 
2007. 

I am deeply grateful to Professor Robert H. Romer for publishing my question20  (was submitted on 
Oct. 7, 1999) and to Professor Timo Nieminen for valuable discussions (Newsgroups: 
sci.physics.electromag).  
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