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Abstract

A spatial model of a free electron (or a positron) is formed by a proposed 
superluminally circulating point-like charged superluminal quantum. The model includes 
the Dirac equation’s electron spin 1

2   and magnetic moment / 2e m  as well as three 

Dirac equation measures of the electron’s Zitterbewegung (“jittery motion”):  a speed of 
light velocity c, a frequency of 2 202 / 2.5 10mc h    hz, and a size of 

131
2 / 1.9 10mc   m. The electron’s superluminal quantum has a closed double-looped 

helical trajectory whose circular axis’ double-looped length is one Compton wavelength 
h/mc. In the electron’s rest frame, the equations for the superluminal quantum’s position 
are:
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where 1
0 2 /R mc   and 2

0 /mc   . The maximum speed of the superluminal quantum 

in the electron’s rest frame is 2.515c. A photon is modeled by an uncharged 
superluminal quantum moving at 1.414c  along an open 45-degree helical trajectory with 
radius / 2R   . 

Introduction

Dirac’s theory of the relativistic electron [1] did not include a model of the 
electron itself, and assumed the electron was a point-like particle. Schrödinger [2]
analyzed the results of the Dirac equation for a free electron, and described a high-
frequency Zitterbewegung which appeared to be due to the interference between positive 
and negative energy terms in the solution. Barut and Bracken [3] analyzed Schrödinger’s 
Zitterbewegung results and proposed a spatial description of the electron where the 
Zitterbewegung would produce the electron’s spin as the orbital angular momentum of 
the electron’s internal system, while the electron’s rest mass would be the electron’s 
internal energy in its rest frame. Barut and Thacker [4] generalized Barut and Bracken’s
analysis of the internal geometry of the Dirac electron to a proper-time formalism. 
Hestenes [5-8] reformulated the Dirac equation through a mathematical approach 
(Clifford algebra) that brings out a geometric trajectory approach to understanding 
Zitterbewegung and to modeling the electron, such as identifying the phase of the Dirac 
spinor with the spatial angular momentum of the electron. A trajectory approach to the 
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Dirac theory has also been utilized by Bohm and Hiley [9], who describe the electron’s 
spin angular momentum and its magnetic moment as due to the circulatory motion of a 
point-like electron. This dynamical approach to understanding Zitterbewegung has been 
elaborated by Holland [10].

The photon has been modeled geometrically, with several results quantitatively 
similar to those in the present superluminal quantum model of the photon, though 
obtained through different approaches. Ashworth [11] obtained a superluminal helical 
photon model whose radius is / 2  , the same as in the proposed superluminal quantum 
model of the photon, from classical mechanics considerations. Kobe [12], in a 
Zitterbewegung approach to the photon, also obtained the same quantitative result for the 
radius of a classical helical model of the photon based on quantum mechanical 
considerations, as independently did Sivasubramanian et al.[13], whose helical photon 
model, also based on a Zitterbewegung approach to the photon, is explicitly internally 
superluminal.

A unified superluminal quantum approach to modeling the electron and 
the photon

The present approach is a unified approach to modeling both the electron and the 
photon with superluminal helical trajectories.  The electron model has several features of 
the Dirac electron’s Zitterbewegung. Point-like entities are postulated called superluminal 
quanta (to distinguish them from electrons and photons themselves.) They have an energy 
E, with its associated frequency f and angular frequency 2 f  , an instantaneous 

momentum P


 with its associated wavelength  and wave number 2 /k   , and an 
electric charge (in the case of the electron). One superluminal quantum forms a photon or 
an electron. Superluminal quanta move in helical trajectories, which may be open (for a 
photon) or closed (for an electron). Movement of the superluminal quantum along its 
trajectory produces an electron or a photon. The type of helical trajectory determines 
which particle is produced.

The energy of a superluminal quantum composing either a photon or electron is 
E    where  is the angular frequency of rotation of the superluminal quantum along
its helical trajectory, whether the trajectory is open or closed. The momentum vector P


of 

a superluminal quantum is directed tangentially along its helical trajectory. The total 
momentum P


has a component p k   that is projected parallel to the helical axis around 

which the superluminal quantum is moving. P


 changes in direction as the superluminal 
quantum moves along its helical trajectory. In the photon model, P


has constant 

magnitude but changes in direction as the superluminal quantum travels along an open 
helix having a constant wavelength and curvature. The projected momentum p along the 
helical axis will be constant in magnitude.  But in the electron model, P


changes in 

magnitude as well as direction with the changing curvature of the closed helical trajectory 
along which the electron’s superluminal quantum travels. Here P


’s projected magnitude 

p along the helical axis, as well as its corresponding wavelength, will also vary in 
magnitude. 
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The longitudinal component of the velocity of a superluminal quantum along its 
helical axis, whether the helix is open in the photon model or closed in the electron 
model, is postulated to always be exactly the speed of light c. In the photon model, the 
superluminal quantum moves at a constant superluminal speed along an open helical 
trajectory with a straight axis. In the electron model, the speed of the superluminal 
quantum varies along the closed helical trajectory and the helical trajectory’s axis is 
circular.

The following superluminal quantum models of a photon and an electron will 
illustrate the superluminal quantum’s properties more concretely.

The superluminal quantum model of the photon

A photon is modeled as a superluminal quantum traveling along an open helical 
trajectory of radius R and pitch (wavelength) . The trajectory makes an angle  with the 
forward direction. In this helical trajectory, these three quantities are related 
geometrically by tan 2 /R   . The superluminal quantum model for a photon of any 
wavelength is found to have the following properties:
1) The forward angle of the helical trajectoryis o45 .
2) The radius of the superluminal quantum’s helical trajectory is / 2R  
3) The speed of the superluminal quantum is 2 1.414..c c along its helical trajectory.
These three results are derived below. An image of the superluminal quantum model of a 
photon is shown in Figure 1.
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Figure 1.   Superluminal model of a photon. A superluminal quantum moves along its 45-
degree open helical trajectory. The radius of the helix is / 2R   . The speed of the 
superluminal quantum along its trajectory is 1.414c.

The superluminal quantum, with total momentum P


 directed along its helical 
trajectory, has a longitudinal component of momentum cos( )P   determined by the 
wavelength of the helix, and a transverse component of momentum sin( )P   that is 
used to calculate the angular momentum or spin of the photon. The superluminal 
quantum’s longitudinal component of momentum is

cos( ) /P h  (1)

the experimental linear momentum of a photon. P


's transverse component of 
momentum sinP  , acting at the helical radius R  from the helical axis, produces an 
angular momentum or spin S whose longitudinal magnitude in the direction the photon is 
moving (or in the opposite direction depending on the helicity of the trajectory) is

sin( ) / 2S RP h   (2)

which is the experimental spin or angular momentum of the photon. Combining
equations (1) and (2) gives

sin( ) / cos( ) tan( ) / 2 R      (3)

Now consider the helical geometry. As the superluminal quantum advances along 
the helix a distance  (one wavelength) in the longitudinal direction, the superluminal 
quantum travels a transverse distance 2 R , i.e. once around the circle of radius R of the 
helix. From the way the helical trajectory’s forward angle is defined, we have

tan( ) 2 /R   (4)

We now have two equations (3) and (4) for tan( ) . Setting them equal gives

tan( ) 2 / / 2R R      (5)

This will only be true when

2 R  (6)

that is, when

/ 2R   (7)

This result implies that tan 1   and therefore



5

o  = 45   (8)

These results for the superluminal quantum model of the photon are true for any 
wavelength. Since the longitudinal velocity component of the photon’s superluminal 
quantum along its helical axis is postulated to be c, the velocity of the photon’s 
superluminal quantum along its helical trajectory is 

o/ cos(45 ) /( 2 / 2) 1.414..v c c c   (9)

Using these results, for a right-handed photon traveling in the +z direction, the 
equations for the trajectory of the superluminal quantum (neglecting a possible phase 
factor) are:
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where 2 2 /f c      is the angular frequency of the photon,  f is the photon’s 
frequency in cycles per second and  is the photon’s wavelength. In the superluminal 
photon model,  is the distance along the helical axis corresponding to one rotation of the 
superluminal quantum along its helical trajectory. 

Similarly, for this right-handed photon, the equations for the components of the 
momentum of the superluminal quantum along its trajectory are
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z

h
p t t

h
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

(11)

The x and y components of momentum are 90 degrees out of phase with the x and 
y position values.

The Heisenberg uncertainty principle and the superluminal quantum
model of the photon

With the superluminal quantum model of the photon, the superluminal quantum 
would be what is actually detected when a single photon is detected in an experiment.
Suppose a photon is traveling in the +z direction. Because of its varying position and 
momentum components as it moves along its trajectory, a range of values of its x and y
components of position and momentum would be detected when various photons 
traveling in the +z direction are measured successively.
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A remarkable aspect of the superluminal model of the photon is that the 
superluminal quantum’s position and momentum components are found to be 
quantitatively closely related to the Heisenberg uncertainty principle. This principle says 
that there is a fundamental limitation on the accuracy of simultaneously measuring two 
related physical properties, such as the position and momentum, of an elementary particle 
or other physical object. Greater accuracy in measuring one of the two properties entails a 
corresponding lesser accuracy in measuring the other related property. The Heisenberg 
uncertainty relationship for the x coordinate of a particle is stated precisely as 

  / 4xx p h    , where x is the standard error (the square root of the statistical 

variance) in measuring the position of the particle along the x direction , xp is the 

standard error in measuring the particle’s momentum along the same x dimension, “ ” 
means “is greater than or equal to”, and h is Planck’s constant, an extremely small 
quantity. How does the Heisenberg uncertainty relation apply to detecting a photon in the 
superluminal photon model? 

Consider detecting the x position and the xp  component of the momentum of the 

superluminal quantum in a photon that is moving horizontally in the +z direction. From 
the results for the superluminal quantum model of the photon obtained earlier, the radius 

of the superluminal quantum’s helical trajectory is
2

R



 . In this example, where the 

average value of ( )x t over a cycle is zero, the standard error x is the root mean square 

(rms) of x, that is the square root of the average value of  2
( )x t  over one cycle. Similarly

xp , the standard error or rms of ( )xp t ,  is the square root of the average value of 

 2
( )xp t over one cycle. So  2 2 2( ) ( ) cos ( )

2
x t t

 


  while 2 2 2( ) ( ) sin ( )x

h
p t t


 . The 

average value of 2cos ( )t  and of 2sin ( )t over a cycle is 
1

2
 for each.  So the average 

value of  2
( )x t is 21

( )
2 2




 and the average value of  2
( )xp t is 21

( )
2

h


. Therefore 
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x

 
 
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( )

2 2
x

h h
p

 
   . Multiplying x by xp  we get 

1 1
( )( )

2 42 2
x

h h
x p


  

    for the superluminal quantum model of the electron.  

Comparing this result with the Heisenberg uncertainty relation 
4x

h
x p


    we see that 

the uncertainty product of the transverse or x components of position and momentum for 
the superluminal quantum in the photon model is exactly the minimum value allowed by 
the Heisenberg uncertainly relation. 

The same quantitative results are found for y and yp , the rms values for other 

transverse components of position and momentum of the superluminal quantum. So 
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4y

h
y p


   .  In the case of the photon model’s longitudinal components z and zp , the 

value of zp  is /h  , which is a constant for this photon, so 0zp  . An open helix in the 

z direction corresponds to an infinitely long trajectory in the z direction, so the position of 
the superluminal quantum along its trajectory in the z direction would be completely
uncertain, i.e. z   . In this case 0zz p    , which is undefined. This also 

corresponds to the Heisenberg uncertainty relation: when the momentum component of 
an object is completely certain, its corresponding position component is completely 
uncertain. 

The above results for the superluminal quantum model of the electron as 
compared with the Heisenberg uncertainty relation could merely be a coincidence. Or 
there could be a deeper reason, which is not yet apparent, for these identical results.

Any real photon will have a finite value of uncertainty in the coordinates of both 
its position and its momentum. A photon, until it is detected, is described quantum 
mechanically by a mathematical superposition of position states or their corresponding 
momentum states, each corresponding to a particular wave function with a particular 
amplitude and phase. This total quantum wave function describing the photon is then
related to the probability of detecting the photon in the regions where the total wave 
function is non-zero. The superluminal photon model seems to be consistent with the 
quantum mechanical interpretation of the photon and the Heisenberg uncertainty 
principle.

The superluminal quantum model of the electron

Besides having the electron’s experimental spin value and the magnetic moment 
of the Dirac electron, the superluminal quantum model of the electron, described below, 
quantitatively embodies the “Zitterbewegung”, the small and rapid oscillatory motion of 
the electron that is predicted by the Dirac equation but which has not been experimentally 
observed.

Zitterbewegung refers to the Dirac equation’s predicted rapid oscillatory motion 
of an electron than adds to its center-of-mass motion. No size or spatial structure of the 
electron has so far been observed experimentally. High energy electron scattering 
experiments by Bender et al. [14] have put an upper value on the electron’s size at 
about 1810 m. Yet Schrodinger's Zitterbewegung results suggest that the electron’s rapid 

oscillatory motion has a magnitude of 1
2 /zittR mc   or 131.9 10 m and an angular

frequency of 2 212 / 1.6 10 / seczitt mc    , twice the angular frequency 2
0 /mc   of 

a photon whose energy is that contained within the rest mass of an electron. Furthermore, 
in the Dirac solution the electron’s instantaneous speed is c, although experimentally 
observed electron speeds are always less than c. An acceptable model of the electron 
would presumably contain these Zitterbewegung properties of the Dirac electron.
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In the present superluminal quantum model of the electron, the electron is 
composed of a charged superluminal point-like quantum moving along a closed, double-
looped helical trajectory in the electron model’s rest frame, that is, the frame where the 
superluminal quantum’s trajectory closes on itself. (In an moving inertial reference 
frame, the superluminal quantum’s double-looped helical trajectory will not exactly close 
on itself.) The superluminal quantum’s trajectory’s closed helical axis’ radius is set to be

131
0 2 / 1.9 10 mR mc    and the helical radius is set to be 02helixR R . The 

superluminal quantum electron model structurally resembles a superluminal quantum
photon model of angular frequency 2

0 /mc   , wavelength /C h mc  (the Compton 

wavelength) and wave number 2 / Ck    that, instead of having a straight axis, moves 

in a circular pattern to form a double-looped helical trajectory having a circular axis of 
circumference / 2C  .  After following its helical trajectory around this circular axis 

once, the electron’s superluminal quantum’s trajectory is o180 out of phase with itself and 
doesn’t close on itself. But after the superluminal quantum traverses its helical trajectory
around the circular axis a second time, the superluminal quantum’s trajectory is back in 
phase with itself and closes upon itself. The total longitudinal distance along its circular 
axis that the circulating superluminal quantum has traveled before its trajectory closes 
is C .

In its rest frame, the electron’s superluminal quantum carries energy
2

0E mc  . Unlike the photon’s superluminal quantum which is uncharged, the 

electron’s superluminal quantum carries the electron’s negative charge –e.

The above closed, double-looping helical spatial trajectory for the superluminal 
quantum in the electron model is given in rectangular coordinates by

0

0

0
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   
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 

 
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

(12)

where 1
0 2 /R mc  is the radius of the circle which is the axis of the double-looped 

helical trajectory, /C h mc  , and d is the distance forward along the circular axis that 

the superluminal quantum has moved while following its helical trajectory. This forward 
speed is postulated to be c, consistent with the Dirac electron’s Zitterbewegung results, so 
in the superluminal quantum’s trajectory above, d ct .

Note that when 1
2 Cd   (at one traversal of the circular axis of the closed helical 

trajectory), the term 2 / Cd  in (12) above has value  . So cos(2 / )Cd   and 

sin(2 / )Cd   are only o180 into their cycles, which only reaches 2 or o360 when 

Cd  (at two traversals of the circular axis of the closed helical trajectory). The second 

term 4 / Cd  in (12) above is in phase at both 1
2 Cd  , which gives the phase 2  (in 
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phase), and Cd  , which gives the phase 4  (in phase), but all of the sine and cosine

terms in the equations in (12) have to be in phase for the helical trajectory to close on 
itself.

Since d ct  , the term cos(2 / )Cd   in (12) becomes

0 0cos(2 / ) cos(2 / ) cos(2 ) cos( )C Cd ct f t t        (13)

and similarly for the other terms in (12). So the position with time of the superluminal 
quantum in the electron model becomes

0 0 0

0 0 0

0 0

( ) (1 2 cos( ))cos(2 )

( ) (1 2 cos( ))sin(2 )

( ) 2 sin( )

x t R t t

y t R t t

z t R t

 

 



 

 



(14)

where 1
0 2 /R mc   and 2

0 /mc   . These equations correspond to a left-handed 

photon-like object of wavelength C , circulating counterclockwise (as seen above from 

the +z axis) in a closed double loop. Two images from different perspectives of the 
superluminal quantum model of an electron are shown in Figure 2. 

Figure 2.  Superluminal model of an electron.  Two views of a superluminal quantum 
moving along its closed double-looped helical trajectory. The circle in the x-y plane of 
radius -131

0 2 /  =1.9 x 10R mc   m is the axis of the closed helix. The maximum speed of 

the superluminal quantum in the electron’s rest frame is 2.515c .

In equation (14), at 0t  , the superluminal quantum is at 0(0) (1 2)x R  ,

(0) 0y  , and (0) 0z  . At this time the quantum is at its maximum speed of 2.515c, as 

can be found by solving the three equations in (14) for ( )xv t , ( )yv t  and ( )zv t and then 

setting 0t  and using 2 2 2( ) ( ) ( )x y zv v t v t v t   . At 2
0 02 / /t T h mc     the 

quantum completes a full cycle around its closed trajectory and its speed v again reaches
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2.515c. But the quantum’s speed is variable along its closed double-looped helical 
trajectory, even passing below the speed c during part of its trajectory. For example, at 
the halfway point in its trajectory when the circulating quantum is nearer the z-axis, (at 

2
0 0/ 2 / / 2t T h mc    ) its speed as found from ( )xv t , ( )yv t  and ( )zv t   is .819v c .

This passage of the quantum from superluminal speeds through c to subluminal 
speeds and back again to superluminal speeds while traveling along its closed trajectory
is not a problem from a relativistic perspective. This is because it is only the point-like 
electric charge -e that is moving at these speeds and not the average center of 
mass/energy of the electron model. This center of mass/energy remains at rest in the 
electron model’s rest frame, and only moves at subluminal speeds when the electron 
model is moving with some average speed.

Similarities between the Dirac equation’s free electron solution and the 
superluminal quantum electron model

The superluminal quantum model of the electron share a number of quantitative 
and qualitative properties with the Dirac equation’s electron with Zitterbewegung:

1) The Zitterbewegung internal frequency of 2
02 / 2zitt mc   .

The superluminal quantum’s trajectory in equation (14) is defined by both the 
frequencies 0 and 02 . 0 is the angular frequency of a photon whose energy is 2mc .

2) The Zitterbewegung radius 1
0 2 / zittR mc R  .

0R in equation (14) is the radius of the circular axis of the closed double-looped 

helical trajectory of the superluminal quantum model. Furthermore 0R was found to be 

the root mean square (rms) value for the x, y and z coordinates of the electron’s 
superluminal quantum’s trajectory described by equation (14). These three rms values of 

0R  are only found if the radius of the closed helical trajectory described in equation (14)

is 02R , which was the value required to give the superluminal electron model the 

required magnetic moment value / 2zM e m   .

3) The Zitterbewegung speed-of-light result for the electron.  

The Dirac equation has eigenvalue solutions of  c for the velocity of the electron
(and the positron). The longitudinal component along the circular axis of the 
superluminal quantum’s closed helical trajectory was postulated to be c, just as in the 
superluminal quantum model of the photon. This internal speed c is incorporated into the 
superluminal quantum trajectory equation (12) for the electron model as d ct , where d
is the forward distance along the helical axis traveled by the superluminal quantum as it 
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follows its helical trajectory. The maximum speed of the electron’s superluminal 
quantum itself is found from the trajectory equations (14) to be 2.515c. 

4) The prediction of the electron’s antiparticle.

The two possible helicities of the superluminal quantum’s closed helical path 
correspond to an electron and a positron. (The existence of the positron is implied by the 
results of Dirac’s equation.). By reversing the helicity for the superluminal quantum
described by the above closed double-looped helix in equation (14), whose left-turning
superluminal quantum corresponds to a left-handed photon, the corresponding anti-
particle’s superluminal quantum would be formed, which would correspond to a right-
handed photon. A charge of +e would have to be supplied to the positron’s superluminal 
quantum for symmetry. The superluminal quantum electron model does not however 
predict whether the circulating left-handed superluminal quantum trajectory described by 
equation (14) is actually associated with an electron or a positron. This could be tested by 
an experiment.

The relationship between charge and helicity in the superluminal quantum
electron and photon models is suggestive of a deeper relationship between helicity, spin 
and charge. The superluminal quantum photon model has an open helical trajectory, spin 
  and no charge. The superluminal quantum electron model has a closed double-looped 
helical trajectory, spin 1

2   and a negative charge. 

5) The calculated spin of the electron.

The value of 0R in the electron model’s superluminal quantum trajectory in 

equation (12) is chosen to give the electron’s experimental value of spin / 2 , the spin 
value also found from the Dirac equation.

The calculation of the electron’s angular momentum or spin in the superluminal 
quantum model of the electron is complicated by the varying radial distance and the 
correspondingly varying wavelength and therefore momentum of the circulating 
superluminal quantum along its closed helical trajectory. The instantaneous angular 

momentum of a circulating object with momentum P


at a distance R


 from a rotational 
axis is

S R P 
  

(15)

In the superluminal quantum model for the electron, the superluminal quantum’s 

instantaneous position and momentum can be described by a radial vector R


 and a 

momentum vector P(R) 
 

. The magnitude of R


, which can be obtained from the 
electron’s superluminal quantum trajectory equation (14), varies with the superluminal 

quantum’s position along its trajectory. The magnitude and direction of P(R) 
 

, the 
superluminal quantum’s instantaneous momentum along its trajectory, are related to the
instantaneous wavelength   of its trajectory. 
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The instantaneous wavelength  at a point on the double-looped helical trajectory 
in equation (14) can be defined consistently as twice the circumference of the circle that 
is parallel to the x-y plane and centered on the z-axis, having radius R and passing
through that point on the trajectory. The radial distance R from the z-axis to that point is 
then directly proportional to the instantaneous wavelength  at that point: 

R K (16)

 where K is the proportionality constant. From equation (12) and the above definition of 
the instantaneous value of ,

0 / 1/ 4CK R    (17)

Substituting equation (17) into equation (16), the relation of R to the instantaneous 
wavelength   at a point on the trajectory is

/ 4R   (18)

Now p, the magnitude of the longitudinal component of P(R) 
 

along the above-
defined circle of radius R, is postulated to be inversely proportional to the instantaneous 
wavelength  at that point, that is,

/p h  (19)

the same as a photon’s momentum relationship with its wavelength. This is consistent 
with the photon model because the superluminal quantum model of the electron is 
basically a charged circulating superluminal quantum model of a photon.

It is this component p of the superluminal quantum’s total momentum P(R) 
 

that 

contributes to zS , the free electron’s spin or angular momentum. By combining equations

(15), (18) and (19), the instantaneous value of the angular momentum zS at any point 

along the closed helical trajectory is given by

1
2

( / 4 )( / )

/ 4
zS Rp h

h

  


 

 

(20)

which is the value of spin of the electron found from the Dirac equation, and which is 

also experimentally correct. Despite the variation in R


 and P(R) 
 

of the superluminal 

quantum along its closed helical trajectory, the instantaneous spin zS of the electron 

remains constant.

6) The calculated magnetic moment of the electron.
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For the closed, double-looped helical trajectory of the charged superluminal 
quantum given in equation (12) the electron’s magnetic moment zM is found from

4

0

1
-e ( ) ( )

4z y xM V R d




  
 

  (21)

which is the average value from 0  to 4  of the superluminal quantum’s 
instantaneous magnetic moment -e ( ) ( )y xV R  as a function of  , where xR is the x-

component of the superluminal quantum’s radius vector R


found from equation (12), 

yV is the y-component of the velocity of the superluminal quantum at R


, and 02 t  .

The superluminal quantum electron’s magnetic moment’s value in equation (21) was set 
to be / 2zM e m   , the value of the Bohr magneton (corresponding to the magnetic 

moment of the Dirac electron). Using the closed double-looped helical trajectory 
structure of equation (12) and solving equation (21) for the unknown value R for the 
radius of the superluminal quantum’s closed helical trajectory that would yield 

/ 2zM e m   ,  gave 02R R where 1
0 2 /R mc   . It is this radius 02R R  that was 

then included in equations (12) and (14) to obtain the trajectory of the superluminal 
quantum model of the electron.

7) The electron’s motion is the sum of its center-of-mass motion and its 
Zitterbewegung, with the motion of the electron’s charge distinct from the motion of 
its center of mass.

For the Dirac electron this is described in [3] where the Zitterbewegung is 
obtained by solving the Heisenberg equations of motion for the position operator x( )t



using the Dirac Hamiltonian 0 p  ( 1)H m c     
 

 . The coordinate operator 

x( )t


contains a “center-of-mass” part 1X( ) p  ( constant vector)t H t a a  
   

that moves 

with a uniform velocity, and an oscillatory part 1 1 2
2( ) [ (0) ] iHtit H p H e     

  
which is

the Zitterbewegung. Therefore in the Dirac free electron solution, x( ) X( ) ( )t t t 


, 
where x( )t


is interpreted as the instantaneous position of the electron’s point-like charge. 

This point-like charge oscillates rapidly according to ( )t


 about the center of mass X( )t


.

The center-of-mass motion X( )t


 is the subluminal linear motion of the Dirac free

electron, while the Zitterbewegung ( )t


is the electron’s speed-of-light oscillatory
motion. In the superluminal quantum model of the electron, equation (14) , corresponding 

to ( )t


, describes the trajectory of the electron’s superluminal charged quantum, whose 
longitudinal component of velocity around its closed helical trajectory’s circular axis is 
the speed of light c. Equation (14), representing the motion of the superluminal charge in 
the electron’s rest frame, can have an added linear position component vt (corresponding 
to the electron’s center-of-mass velocity v) in the z direction which would correspond to 

X( )t


above. 
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The double-looping helical trajectory, which closes on itself exactly in the rest 
frame, would therefore not close exactly in a moving frame due to the small average 
displacement of the charged quantum in the z direction during each cycle of the 
superluminal quantum along its helical trajectory. The position of the electric charge in 
the Dirac electron is not the same as the position of the electron’s center of mass. This is 
also the case in the superluminal quantum model, where the electron’s charge is moving 
with the superluminal quantum, but the electron as a whole, with its total energy content
and average center-of-mass position, can only move subluminally.

8) The non-conservation of linear momentum in the Zitterbewegung of a free 
electron.

In the oscillatory Zitterbewegung of a free electron, linear momentum is not 
conserved, a result first pointed out by de Broglie [15]. In the Zitterbewegung’s quantum 
dynamics the expectation value /kdp dt  does not equal zero, even in the absence of an 

applied force kF . This lack of conservation of linear momentum in the Zitterbewegung is 

also the case in the rest frame of the superluminal quantum model of the electron, due to 
the rapid changing in magnitude and direction of the superluminal quantum’s linear 

momentum vector P


as the superluminal quantum moves along its closed helical 
trajectory. But violations of the conservation of energy can occur in quantum 
electrodynamics if the time interval in which the violation occurs is shorter than the 
minimum time permitted for experimental observations by the Heisenberg uncertainty 
relations. In the same way, violations of conservation of linear momentum in the Dirac 
electron’s Zitterbewegung , as well as in the present superluminal model of the electron, 
may be similarly permitted within the range of the size of the electron’s Zitterbewegung
amplitude 131

0 2 / 1.9 10 mR mc    .

Testing the superluminal electron and photon models

Testing for the existence of an electron’s superluminal quantum with its
Zitterbewegung angular frequency 2 212 / 1.6 10 / seczitt mc    could require great 

ingenuity. Yet this Zitterbewegung angular frequency comes directly from the solution to
the relativistic Dirac equation for a free electron.

It might be objected that since in the present models for the electron and the 
photon, the proposed quanta always travel superluminally, these models violate the
theory of relativity’s upper limit of c for the velocity of the transport of information. But 
the elementary particles that superluminal quanta form do not themselves travel faster 
than c, so this is not a valid objection to the possible existence of superluminal quanta
that form photons or electrons.

Since superluminal quanta would form photons that can have angular frequencies 
much lower than 211.6 10 / seczitt   , one possible approach to testing the superluminal 

quantum hypothesis is to try to detect them in lower frequency photons, possibly in the
frequency range of visible light or microwave radiation. Laser or maser radiation is 
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highly coherent and this could facilitate the localization of helically moving superluminal 
quanta in individual photons that are all moving in phase. Such measurements are 
discussed in [13] which concerns detecting Zitterbewegung in photons.

There is also a possible test of the superluminal quantum model for the electron. 
According to this model, an electron and a positron differ in the direction of their internal 
helicities. If the electron were structured like a circulating left-handed photon, then a 
positron would be structured like a circulating right-handed photon, and vice versa. 
Electrons should therefore differentially absorb, scatter or otherwise interact with
incoming left and right-handed photons having energies corresponding to the rest mass of 
electrons. 

Conclusions

The photon and the electron are modeled as helically circulating point-like quanta 

having both particle-like (E and P


) and wave-like (  and  ) characteristics. The photon 
model’s quantum always moves superluminally along its open helical trajectory. The 
electron model’s quantum moves sometimes superluminally and sometimes subluminally
during its closed double-looped helical trajectory.  The number of quantitative and 
qualitative similarities between the Dirac electron with Zitterbewegung and the proposed 
superluminal quantum model of the electron is remarkable, given the relatively simple 
mathematical form of the superluminal quantum’s trajectory. This suggests that the 
superluminal quantum concept may provide useful physical models for the electron and 
the photon, and perhaps for other elementary particles as well.  
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