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Abstract

A class of proper generalizations of the (Anti) de Sitter solutions are presented
that could provide a very plausible resolution of the cosmological constant problem
along with a natural explanation of the ultraviolet/infrared ( UV/IR) entanglement
required to solve this problem. A nonvanishing value of the vacuum energy density
of the order of 10−121M4

Planck is derived in perfect agreement with the experimental
observations. Exact solutions of the cubic equations associated with the location
of the horizons of this class of ( Anti ) de Sitter-Schwarzschild metrics are found.
These solutions are very appealing because one could interpret M as the mass of
an unbounded universe ( since the range of values for r are 0 ≤ r ≤ ∞ ) and whose
magnitude of the cosmological constant is λ = R−2

H when RH = RHubble(today).
In addition we obtain a lower bound to the mass of the universe of the order
2M ∼ 1061MPlanck ∼ 1080 mproton that agrees with the Dirac-Eddington large
number result.

1 A very brief Historical Introduction on the

Schwarzcshild solutions

We begin by writing down the class of static spherically symmetric (SSS) vacuum solu-
tions of Einstein’s equations studied by Abrams [5] (where there are NO mass sources
anywhere) given by a infinite family of solutions parametrized by a family of admissible
radial functions R(r)

(ds)2 = g00 (dt)2 + grr (dr)2 − (R(r))2 (dΩ)2 (1.1)

1Dedicated to the loving memory of Rachael Bowers
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the solid angle infinitesimal element is

(dΩ)2 = sin2(φ)(dθ)2 + (dφ)2. (1.2)

and
g00 = (1− α

R(r)
)

grr = −(1− α

R(r)
)−1 (

dR(r)

dr
)2. (1.3)

where α is an arbitrary constant that happens to have dimensions of mass when c = G = 1
( but there are no masses at all in this vacuum case ) and R(r) are an infinite family of
functions like

R(r) = r + α; R(r) = [r3 + α3]1/3; R(r) = [rn + αn]1/n..... (1.4)

found by Brouillin [3] , Schwarzschild [2] and Crothers [7], respectively obeying the con-
ditions that

R(r = 0) = α; and when r >> α ⇒ R(r) → r (1.5)

Numerous authors have corroborated over the years through lengthy but straightforward
calculations [5], [6], [7], [8], [9] that there exist an infinite class of solutions to the vacuum
SSS Einstein’s equations Rµν = R = 0 for an arbitrary family of radial functions R(r) of
the type displayed above ( but the curvature Riemnan tensor Rµ

νρσ 6= 0 ). This arbitrary
family of radial functions R(r) resemble the travelling wave Maxwell solutions in the
vacuum that are given by arbitrary functions of x − ct and x + ct like Φ = f(x − ct) +
f(x + ct).

In [15] we studied the many subtleties behind the introduction of a true point-mass
source at r = 0 ( that couples to the vacuum field ) and the physical consequences of the
delta function singularity (of the scalar curvature) at the location of the point mass source
r = 0. It is true that a point mass (infinity density) may seem like a pure mathematical
idealization, nevertheless it arises physically when the continuous gravitational collapse
of a compact star (initiated by Oppenheimer-Snyder ) is reconsidered [6] from the very
own perspective of the class of solutions associated with the above family of admissible
radial functions R(r) that satisfy R(r = 0) = 2M and R(r →∞)→ r. These authors [6]
have found that a continuous gravitational collapse leads to a true point mass of infinite
density ( naked singularity ), whose worldline is timelike as it should, and it does not end
in a black-hole whose horizon encloses a spatial singularity at r = 0.

We shall leave for future work these sort of discussions and controversial findings that
do not agree with the Hawking-Penrose-Geroch singularity theorems and just focus on
the study of solutions with a nonvanishing cosmological constant next.

2 The Cosmological Constant and Dirac-Eddington

large number coincidences

In this final and main section we shall study some of the most pertinent cosmological im-
plications of introducing radial functions R(r) 6= r in the ( Anti ) de Sitter-Schwarzschild
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solutions as follows

g00 = ( 1− 2M

R(|r|)
−λ R(|r|)2 ). grr = −( 1− 2M

R(|r|)
−λ R(|r|)2 )−1 (dR(|r|)/dr)2 (2.1)

The angular part is given as usual in terms of the solid angle by −(R(|r|))2(dΩ)2. The
λ < 0 case corresponds to Anti de Sitter-Schwarzschild solution and λ > 0 corresponds
to the de Sitter-Schwarzschild solution. The physical interpretation of these solutions is
that they correspond to ”black holes” in curved backgrounds that are not asymptotically
flat. For very small values of R one recovers the ordinary Schwarzschild solution. For
very large values of R one recovers asymptotically the ( Anti ) de Sitter backgrounds of
constant scalar curvature.

These are the SSS solutions to Einstein’s equations with a cosmological constant.
These solutions were studied earlier by [7] but unfortunately this author performed an
erroneous analysis of these cosmological models. Thus, contrary to the claims [7], we will
show below that there are nontrivial solutions with a nonvanishing cosmological constant
λ when the correct expression for the radial functions R(r) are introduced.

One particular expression for the radial function in the de Sitter-Schwarzschild ( λ > 0
) case is

1

R2 − (2M)2
=

1

r2
+ λ. (2.2)

since r2 = |r|2 there is no need to explicitly write the modulus sign in (2.2) and in the
discussion below. When λ = 0 one recovers R2 = r2 + (2M)2 as before in the pure
Schwarzschild case given by a family of admissible radial functions obeying R(r = 0) =
2M and asymptotically tending to R ∼ r for large values of r compared to 2M . When
M = 0 the radial function becomes

1

R2
=

1

r2
+ λ. (2.3)

In this case, one encounters the reciprocal situation ( the ”dual” picture ) of the
Schwarzschild solutions : ( i ) when r tends to zero ( instead of r = ∞ ) the radial
function behaves R(r → 0) → r ; in particular R(r = 0) = 0 and (ii) when r = ∞ (

instead of r = 0 ) the value of R(r = ∞) = RHorizon =
√

1
λ

and one reaches the location

of the horizon given by the condition g00[R(r =∞)] = 0.
The proper radius Rp(r) is given by the integral

Rp(r) =
∫ dR√

1− λ R2
=

1√
λ

arcsin [ R(r)
√

λ ] ⇒

Rp(r = 0) = 0 since R(r = 0) = 0; and Rp(r =∞) =
π

2

1√
λ

=
π

2
RHorizon. (2.4)

When M 6= 0 one has for the de Sitter case

g00(r∗) = 0 ⇒ 1− 2M

R(r∗)
− λ R(r∗)

2 = 0 (2.5)
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a cubic equation whose solutions R∗ will restrict the values of the radial function R∗ =
R(r∗) at r = r∗ 6=∞ , in terms of the mass parameters M and the cosmological constant
λ = 16πGρvacuum . The cubic equation will be solved exactly as shown below contrary to
the assertions of [7] that it cannot be solved exactly.

Let us begin with the de Sitter case ( by setting M = 0 ), the condition

g00(r =∞) = 0 ⇒ 1− λ R(r =∞)2 = 0 (2.6)

has a real valued solution

R(r =∞) =

√
1

λ
= RHorizon. (2.7)

the correct order of magnitude of the observed cosmological constant can be derived from
eq-(2.7) by equating R(r =∞) = RHorizon = Hubble Horizon Radius as seen today of the
order of 1060 LPlanck and setting G = L2

Planck ( h̄ = c = 1 units) in

16π G ρvacuum = λ =
1

R(r =∞)2
=

1

R2
H

⇒

ρvacuum =
1

16π

1

L2
P

1

R2
H

=
1

16π

1

L4
P

(
LP

RH

)2 ∼ 10−121 (MPlanck)
4. when RH ∼ 1060LP .

(2.8)
which agrees with the experimental observations.

We continue with a relevant analysis of the UV/IR ( ultraviolet-infrared ) entangle-
ment involving the interaction of small-large scales within the context of the cosmological
constant problem. The transformation

r → 1

λr
; λ 6= 0. (2.9)

exchanges small distances with large distances and vice versa, reminiscent of the T -
duality in string theory compactifications, and leads to a dual radial function of the form

1

R̃2
= (λr)2 + λ. (2.10a)

where now one has the reciprocal ( ”dual” ) behaviour as that of eq-(2.7)

R̃(r =∞) = 0; R̃(r = 0) =
1√
λ

. (2.10b)

and the horizon condition g00(RHorizon) = 0 is now attained at r = 0 ( due to the small-
large scales exchange)

g00(r = 0) = 0 ⇒ 1− λ R̃(r = 0)2 = 0 ⇒ R̃(r = 0) =
√

1/λ = RHorizon. (2.11)

It is clear now why if one had written R̃(r) = r in eq-(2.11) and introduced the Planck
scale as an ultraviolet cutoff, instead of setting r = 0, one would have obtained an answer
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in eq-(2.11) that is off by 120 orders of magnitude ! ( which is the cosmological constant
problem ) . What the dual radial function R̃(r) achieves in eqs-(2.10a, 2.11) is to map the
extreme ultraviolet ( UV ) region r = 0 onto the infrared ( IR ) region R̃(r = 0) = RHubble.
Hence, the presence of the dual radial function R̃(r) implements the necessary UV/ IR
entanglement associated with the resolution of the cosmological constant problem.

In [14] we have shown why AdS4 gravity with a topological term; i.e. an Einstein-
Hilbert action with a cosmological constant plus Gauss-Bonnet terms can be obtained from
the vacuum state of a BF-Chern-Simons-Higgs theory without introducing by hand the
zero torsion condition imposed in the MacDowell-Mansouri-Chamsedine-West construc-
tion. One of the most salient features of [14] was that a geometric mean relationship
was derived ( from scratch, instead of postulating it ) among the vacuum energy density
ρ , the Planck area L2

P and the AdS4 throat size squared R2 given by ρ = (LP )−2 R−2.
Upon setting the throat size to coincide with the Hubble scale RH ( since the throat size
of de Sitter and Anti de Sitter is the same ) one obtains the observed value of the vacuum
energy density ρ = L−2

PlanckR
−2
H = L−4

P (LP /RH)2 ∼ 10−120(MPlanck)
4.

To finalize we will analyze in detail the exact solutions to the cubic equation in the (
Anti ) de Sitter-Schwarzschild solutions. Let us begin with de Sitter-Schwarzschild case.
The cubic equation that sets the location R∗ of the horizon g00(R = R∗) = 0 is given by

R3
∗ −

R∗

λ
+

2M

λ
= 0. λ > 0. (2.12)

whose 3 solutions are

R1 = (S + T ). (2.13a)

R2 = − 1

2
(S + T ) +

i
√

3

2
(S − T ). (2.13b)

R3 = − 1

2
(S + T ) − i

√
3

2
(S − T ). (2.13c)

where

S = [ − M

λ
+

√
M2

λ2
− 1

27λ3
]1/3. (2.14a)

T = [ − M

λ
−

√
M2

λ2
− 1

27λ3
]1/3. (2.14b)

If we don’t wish to have complex roots one has two cases to study. One case is when
S = T and the other case is when S 6= T by disregarding the complex roots and keeping
only the real root R1. Let us focus now on the S = T case :

S = T ⇒ M2

λ2
− 1

27λ3
= 0 ⇒ M

λ
=

1√
27λ3

. (2.15)

the roots become
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R1 = −2 [
M

λ
]1/3 < 0. (2.16a)

R2 = R3 = −1

2
(−2) [

M

λ
]1/3 = [

M

λ
]1/3 = [

1√
27λ3

]1/3 =
1√
3λ

= 0.5773 RH . (2.16b)

The fact hat we have found one negative root for the radial function R(r1) does not
necessarily mean that the value of r1 is negative. We will discuss this R1 < 0 case in
detail below. There are two equal positive roots R2 = R3 whose value is less than the
Hubble scale RH

R∗ = R2 = R3 =
1√
3λ

<
1√
λ

= RH . (2.17)

as it should, otherwise there would not have been a real valued solution for r∗ such that
R(r∗) = R2 = R3. Plugging the value of R∗ = R2 = R3 = (3λ)−1/2 into the defining
relation for the radial function in eq-(2.2) yields the finite value of r∗ ( compared to the
r =∞ value when M = 0 ) after one uses the relation M2 = (1/27λ) of eq-(2.15 ) in

1

R2
∗ − (2M)2

=
1

r2
∗

+ λ ⇒ r∗ =

√√√√ R2
∗ − (2M)2

1− λ((R2
∗ − (2M)2)

=

r∗ =

√
15

66

1√
λ

= 0.4767 RH . (2.18)

To sum up, the solutions to the cubic equation yield in the S = T case the following
numerical relations

R(r = 0) = 2M ; R(r =∞) =

√
(2M)2 +

1

λ
> 2M. (2.19)

and

2M =

√
4

27

1√
λ

< R(r∗) = R∗ =
1√
3

1√
λ

<

√
(2M)2 +

1

λ
=

√
31

27

1√
λ

. (2.20)

The case S 6= T is obtained by disregarding the two complex roots while maintaing
the real root R1 . However, one ends up with another negative root R1

R1 = [ − M

λ
+

√
M2

λ2
− 1

27λ3
]1/3 + [ − M

λ
−

√
M2

λ2
− 1

27λ3
]1/3 < 0. (2.21)

because one is required to choose in this S 6= T case the condition

M2

λ2
− 1

27λ3
> 0. (2.22)

that, in turn, will force R1 < 0. Despite the fact that R1(r = r1) < 0 this does not
necessarily mean that the value of r1 is negative. If R2

1 > (2M)2 there are real-valued
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solutions for r = r1 that could still be positive by direct inspection of eq-(2.18). The
inequality R1(M, λ)2 > (2M)2 obtained from eq-(2.21) in conjunction with the other
inequality given by eq-(2.22) will yield the constraint relation of the values M, λ in the
M − λ parameter space that would determine whether or not there exists a real-valued
and positive r1 > 0 despite having R1 < 0. Whether or not such conditions can be met
simultaneously for the values M > 0; λ > 0 needs to be studied further. Unfortunately
the expressions are rather unwieldy. If one had chosen the radial function to be R(r) = r
then one would immediately conclude that r1 < 0. But since R(r) 6= r one can still
have r1 > 0 for R1 < 0 ! which is a very interesting possibility that warrants further
investigation.

It is important to remark at this point that

g00 = (1− 2M

R
− λR2) ≤ 0 (2.23)

not only when 2M ≤ R ≤ R∗ but also when R > R∗ due to the double-root nature
of the solutions to the cubic equation given by eq-(2.16b). Because the component g00

does not change sign as one crosses R∗, strictly speaking, one does not have a horizon
as such for R∗ because g00 ≤ 0 in the domain of values of the radial function defined by

2M ≤ R ≤
√

(2M)2 + 1
λ

that is associated, respectively, with the values of r in the
domain 0 ≤ r ≤ ∞ .

However, there is a horizon in the case of the simple real root R1 < 0 ( when S 6= T )
in eq-(2.21) because g00 ≥ 0 when R1 < R < 0 provided (2M)2 < R2 < R2

1 ; and g00 ≤ 0
when R < R1 < 0 . Thus g00 does change sign when one crosses R1 < 0. The same
conclusions apply to the negative simple root R1 < 0 found earlier for the S = T case
and given by eq-(2.16a). One has a true horizon since g00 changes sign as one crosses R1.
Since the solution of eq-(2.16a) obeys the requirement R2

1 = (4/3λ) > (2M)2 = (4/27λ)
one could have real-valued and positive r1 > 0 solutions by inspection of eq-(2.18).

Let us study now the Anti de Sitter-Schwarzschild case. The location of the horizon
involves finding solutions of the cubic equation

g00(r∗) = 0 ⇒ 1− 2M

R(r∗)
+ λ R(r∗)

2 = 0 (2.24)

It is very important to emphasize that one has already taken into account the fact λAdS =
−λdS in eq-(2.24). Therefore in eq-(2.24), and all the expressions that follow, when we
write λ it should be understood as |λ| and hence it is a positive quantity. The unique
real-valued positive solution (obtained by replacing λ→ −λ in the above solutions of the
de Sitter case ) is :

R∗ = [
M

λ
+

√
M2

λ2
+

1

27λ3
]1/3 + [

M

λ
−

√
M2

λ2
+

1

27λ3
]1/3 > 0. (2.25)

We must disregard the two complex roots. There are no double roots in the AdS case
because M2

λ2 + 1
27λ3 6= 0. A careful study reveals that the radial function R(r) in the Anti de
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Sitter case must differ from the de Sitter case and is obtained from eq-(2.2) by replacing
λ→ −λ

1

R2 − (2M)2
=

1

r2
− λ ⇒ R(r = 0) = 2M ; R(r =∞) =

√
(2M)2 − 1

λ
< 2M. (2.26)

and it leads to the inequality 2M > R∗ > R(r =∞) because it is a decreasing function
of r and which can be recast explicitly as

2M > [
M

λ
+

√
M2

λ2
+

1

27λ3
]1/3 + [

M

λ
−

√
M2

λ2
+

1

27λ3
]1/3 >

√
(2M)2 − 1

λ
≥ 0 (2.27)

Hence, eq-(2.27) defines the explicit constraint relation between the allowed values of M
and λ in the M − λ parameter space. In this case one has a true horizon since the metric
component

g00(R(r)) = 1− 2M

R(r)
+ λ R(r)2 ≥ 0; when 2M ≥ R ≥ R∗ (2.28)

will change sign

g00(R(r)) = 1− 2M

R(r)
+ λ R(r)2 ≤ 0; when R∗ ≥ R ≥

√
(2M)2 − 1

λ
≥ 0 (2.29)

The UV/IR entanglement map r → 1/λr in eq-(2.26) yields the dual version of the
radial function R̃(r)

1

R̃2 − (2M)2
= (λr)2 − λ ⇒ R̃(r =∞) = 2M ; R̃(r = 0) =

√
(2M)2 − 1

λ
< 2M.

(2.30)
which is an increasing function of r, instead of a decreasing function like R(r) in eq-(2.26).
In this dual case the metric component

g00(R̃(r)) = 1− 2M

R̃(r)
+ λ R̃(r)2 ≤ 0; when

√
(2M)2 − 1

λ
≤ R̃ ≤ R∗ (2.31)

will change sign and become

g00(R̃(r)) = 1− 2M

R̃(r)
+ λ R̃(r)2 ≥ 0; when R∗ ≤ R̃ ≤ 2M (2.32)

One notices that the g00 > 0 behaviour occurs when R > R∗ = RHorizon and/or
R̃ > R∗ = RHorizon and it is is similar to the behaviour of g00 in the exterior region of
a ”black hole” horizon. From eqs-(2.29, 2.31) one can infer from the condition
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√
(2M)2 − 1

λ
= real − valued ⇒ 2M ≥ 1√

λ
. (2.32)

If one were to interpret 2M = 1√
λ

= RHubble as the lower bound for the mass of the

universe and take a value of RHubble ∼ 1061LPlanck one would have in the appropriate
units the following

2M ∼ 1061 MPlanck ∼ 1080 mproton. (2.33)

that agrees with the Dirac-Eddington large number coincidences

N = 1080 ∼ (
Fe

FG

)2 ∼ (
RHubble

re

)2. (2.34)

where Fe = e2/r is the electrostatic force between an electron and a proton; FG =
Gmemp/r

2 is the corresponding gravitational force and re = e2/me ∼ 10−13cm is the
classical electron radius in natural units of h̄ = c = 1.

By inspection one can verify that the lower bound 2M = 1√
λ

obeys the condition

given by eq-(2.27). The latter becomes

2M =
1√
λ

> R∗ = ( [
1

2
+

√
31

108
]1/3 + [

1

2
−

√
31

108
]1/3 )

1√
λ

= 0.6823
1√
λ

. (2.35)

It is clear that a lot of work and re-thinking remains to be done pertaining the proper
use of the radial functions R(r) in the class of SSS solutions to Einstein’s equations with
and without a cosmological constant. The fact that we were able to obtain the correct
magnitude of the observed cosmological constant and the correct lower estimate of the
mass of the universe related to the Dirac-Eddington’s large number N = 1080 is a positive
sign that one should use the solutions displayed in this work based on a suitable class
of radial functions R(r) rather than the naive choice R = r we have been familiar with
during all these decades !
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