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Abstract
A proposal unifying four approaches to genetic code is discussed.
The first approach is introduced by Pitkänen and is geometric:

genetic code is interpreted as an imbedding of the aminoacid space to
DNA space possessing a fiber bundle like structure with DNAs coding
for a given aminoacid forming a discrete fiber with a varying number
of points. Also Khrennikov has proposed an analogous approach based
on the identification of DNAs coding for a given aminoacid as an orbit
a discrete flow defined by iteration of a map of DNA space to itself.

Second approach starts from the 5-adic approach of Dragovich and
Dragovich. Codons are labelled by 5-adic integers n which have no non-
vanishing 5-digits so that the n is in the range [31, 124]. The number
of primes in the range [31, 124] is 20. This suggests the labelling of
aminoacids by these primes. This inspires an additional condition on
the geometric code: if possible, one of the integers n projected to p
equals to p(n). This condition fails only for the primes 53,79,101,103
for which some of 5-digits vanishing in 5-ary expansion.

The third approach is based on the generalization of the basic idea
of the so called divisor code proposed by Khrennikov and Nilsson. The
requirement is that the number of factors for integer n labelling one
of DNAs, call it nd coding for a given aminoacid is the total number
of codons coding for the aminoacid, its degeneracy. Therefore a given
aminoacid labelled by prime p with no non-vanishing 5-digits is coded
by DNAs labelled by p itself and by nd. A group theoretic and physical
interpretation for the origin of the divisor code is proposed.

The fourth approach is a modification of the earlier 4-adic number
theoretic thermodynamics approach of Pitkänen.

a) 5-adic thermodynamics involving a maximization of number the-
oretic negentropy Np(n) = −Sp(n) > 0(!) as a function of p-adic prime
p labelling aminoacids assigns a unique prime to the codon. If no prime
in the range divides Sp, the codon is identified as a stopping codon.

b) The number theoretic thermodynamics is assigned with the par-
titions P of the integer n2) determined by the first two letters of the
codon (16 integers belonging to the range [6, 24]). The integer valued
number theoretic Hamiltonian h(P ) ∈ Z25 appearing in the Boltzmann
weight 5h(P )/T5 is assumed to depend on the number r of summands
for the partition only. h(r) is assumed to be tailored by evolution so
that it reproduces the code.

c) The effect of the third nucleotide is described in terms of 5-adic
temperature T5 = 1/n, n ∈ [0, 24]: the variation of T5 explains the
existence of variants of genetic code and its temporal variation the
observed context sensitivity of the codon-aminoacid correspondence
for some variants of the code.

A numerical calculation scanning over N ∼ 1030 candidates for
h(r) allows only 11 Hamiltonians and with single additional symmetry
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inspired condition there are 2 solutions which differ only for 5 largest
values of r. Due to the limited computational resources available only
24 percent of the available candidates have been scanned and the naive
expectation is that the total number of Hamiltonians is about about
45 unless one poses additional conditions.

1 Introduction

A proposal unifying four approaches to genetic code is discussed.
The first approach is introduced by Pitkänen [L1, L4] and is geometric:

genetic code is interpreted as an imbedding of the aminoacid space to DNA
space possessing a fiber bundle like structure with DNAs coding for a given
aminoacid forming a discrete fiber with a varying number of points. Also
Khrennikov has proposed an analogous approach based on the identification
of DNAs coding for a given aminoacid as an orbit a discrete flow defined by
iteration of a map of DNA space to itself [3].

Second approach starts from the 5-adic approach of Dragovich and Dragovich
[1]. Codons are labelled by 5-adic integers n which have no non-vanishing
5-digits so that the n is in the range [31, 124]. The observation of Pitkänen
that the number of primes in the range [31, 124] is 20 makes the labelling
of aminoacids by primes in this range suggestive. The identification of the
conjugation k → 5 − k as DNA conjugation is however re-interpreted as
the symmetry with respect to third letter leaving for all codons the coded
aminoacid invariant in the case of vertebrate mitochondrial code. This in-
spires an additional condition on the geometric code: if possible, one of the
integers n projected to p equals to p(n). This condition fails only for the
primes 53,79,101,103 for which some of 5-digits vanishing in 5-ary expansion.

The third approach is based on the generalization of the basic idea of
the so called divisor code proposed by Khrennikov and Nilsson [2]. The
requirement is that the number of factors for integer n labelling one of DNAs,
call it nd coding for a given aminoacid is the total number of codons coding
for the aminoacid, its degeneracy. Therefore a given aminoacid labelled
by prime p with no non-vanishing 5-digits is coded by DNAs labelled by p
itself and by nd. The two conditions fix the code to a high degree when
one requires that all known variants of the code can be produced. A group
theoretic and physical interpretation for the origin of the divisor code is
proposed.

The fourth approach is a modification of the earlier 4-adic number the-
oretic thermodynamics approach of Pitkänen.

a) 5-adic thermodynamics involving a maximization of number theoretic
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negentropy Np(n) = −Sp(n) > 0(!) [L3, H2] as a function of p-adic prime
p labelling aminoacids assigns a unique prime to the codon. If no prime in
the range divides Sp, the codon is identified as a stopping codon carrying no
information. The maximization criterion reduces to the condition that p(n)
corresponds to the largest prime power divisor of the partition function.

b) With a motivation coming from the symmetries of the code, the num-
ber theoretic thermodynamics is assigned with the partitions P of the integer
n2) determined by the first two letters of the codon (16 integers belong-
ing to the range [6, 24]). The integer valued number theoretic Hamiltonian
h(P ) ∈ Z25 appearing in the Boltzmann weight 5h(P )/T5 is assumed to de-
pend on the number r of summands for the partition only. h(r) is assumed
to be tailored by evolution so that it reproduces the code.

c) The effect of the third nucleotide is described in terms of 5-adic tem-
perature T5 = 1/n, n ∈ [0, 24]: the variation (also temporal) of this tem-
perature explains the existence of variants of genetic code and its temporal
variation the observed context sensitivity of the codon-aminoacid correspon-
dence for some variants of the code [5, L4].

A numerical calculation scanning over N ∼ 1030 candidates for h(r)
allows only 11 Hamiltonians and with single additional symmetry inspired
condition there are 2 solutions which differ only for 5 largest values of r.
Due to the limited computational resources available only 24 percent of the
available candidates have been scanned and the naive expectation is that the
total number of Hamiltonians is about about 45 unless one poses additional
conditions.

2 Unifying various approaches to the genetic code

The understanding of genetic at deeper level has gained increasing attention:
mention only the proposals of Khrennikov [3, 4], Pitkänen [L1, L3, L4], and
Dragovich and Dragovich [1]. Quite recently Khrennikov and Nilsson intro-
duced the idea of divisor code [2]. The idea is inspired by the observations
that the numbers of divisors of integers in the range [1, 20] are rather near to
degeneracies of aminoacids for the genetic code. The attempts to realize this
idea as such were however not successful and this led to a generalization of
the basic idea of the divisor code and stimulated the attempt to combining
four different approaches to the genetic code to single unified approach.
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2.1 Geometric approach to the genetic code

The geometric approach of Pitkänen [L1, L3, L4] was inspired by the basic
hypothesis of TGD [9, 10, 11] that space-times can be regarded as 4-surfaces
X4 ⊂ H = M4 × CP2 of 8-dimensional imbedding space H. The idea was
to replace H by the discrete space of integers labelling the 64 DNA triplets
and X4 by the discrete space of 20 amino-acids [L4]. Thus genetic code
imbeds aminoacid space with points labelled by integers nA to the DNA
space labelled by some subset of integers (not necessarily 0 ≤ n ≤ 63) such
that the DNAs coding for a given aminoacid A form a discrete fiber like
structure. One could also assume that one of the integers n(DNA) labelling
one of DNAs coding for A satisfies n(DNA) = n(A) if possible.

As a matter fact, there exists the algebraic-geometric theory for codes
based on the identification of code as a subset of subspace of Gk

p where Gp

is finite field [7]. If the points of this subset are labelled by some subset of
integers m, the inclusion induces the code as a map m → n(m) where n(m)
consists of k Gp valued numbers. This concept of code does not apply to
genetic code but the generalization is obvious: assign to the imbedding a
bundle structure assigning to each point n(m) a fiber consisting of points of
Gk

p.
Khrennikov [3] has proposed identification of codons coding for given

aminoacid as an orbit of a discrete flow in the space of codons. It is possible
to interpret DNA space as a bundle with fibers identified as orbits of the
flow acting as a discrete group Zn of symmetries in the fiber. The imbedding
of aminoacid space to DNA space in the case of 5-adic code is however not
quite equivalent with this view since four primes labelling aminoacids do not
label codons.

2.2 4-adicity and 5-adicity as possible realizations of the
symmetries of the genetic code

An important physical constraint on any model is the fact that for the
mitochondrial code codons have exact A-C and G-U symmetries with respect
to the last codon. For eukaryote code this symmetry is broken only by two
codons (Stop-Trp and Ile-Met pairs). A natural origin for this symmetry
would be the formation of the 3-codons via fusion of 2-codons and 1-codons
as suggested in the model of prebiotic evolution proposed in [L4].

One can consider two mathematical models for this symmetry.
a) 4-adic model of Pitkänen [L3] assumes the labelling of the codons

using 4-adic numbers n = n0 + n14 + n316, ni ∈ Z4 such that codons with
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i = 0, 2 and 1, 3, which are 4-adically close to each other, correspond to
symmetry related pairs. Also the model of Khrennikov and Kozyrev based
on the identification of DNA space as 8×8 diadic plane (chess board!) starts
from 4-adicity [4] and interprets genetic code as a locally constant map from
DNA space to amino-acid space. The number of primes p < 64 is 18 which
leads to the idea that integers n = 0, 1 and the primes p < 64 code for
aminoacids. Note however that 4-adicity as a strict symmetry needs to be
assumed only for the third nucleotide.

b) For the 5-adic labelling of the codons suggested Dragovich and Dragovich
[1] codons are labelled by integers n0 + n15 + n252 with ni 6= 0 and vary
in the range [31, 124]. The observation that the number of primes in this
range is 20 inspires the hypothesis that that the primes in question label
aminoacids. 5-adicity in the weakest sense means 5-adicity with respect to
the third nucleotide so that either the codons (n, n + 50) or codon pairs
(n, n + 25) and (n, n + 75) code for the same aminoacid in the case of ver-
tebral mitochondrial code. There are three primes pairs (p, p1 = p + 50)
[(47,97),(53,103),(59,109)] so that n → n + 50 symmetry is not consistent
with the labelling of aminoacids by primes. Hence only (n, n + 25) and
(n, n + 75) option meaning that A-C and G-U pairs correspond to even and
odd integers is acceptable and that the conjugation n3 → 5 − n3 cannot
correspond to DNA conjugation, which was the original motivation for the
5-adicity, but to the A↔C and G↔U symmetries.

2.3 Number theoretical thermodynamics and genetic code

The original thermodynamical model for the genetic code developed by
Pitkänen [L3] is based on 4-adic labelling of codons. The model assumes
that the number theoretical thermodynamics associated with the partitions
of integers n labelling codons assigns to a given codon a unique prime la-
belling the aminoacid coded by DNA as the prime p for which the number
theoretic negentropy Sp = −

∑
k pklogp(|pk|p)log(p) is maximum: here |x|p

denotes p-adic norm. Sp satisfies basic axioms of Shannon entropy but can
be also negative so that its negative becomes a genuine measure of infor-
mation [H2, L3]. Stopping codons would correspond to DNAs for which no
prime in the allowed range of primes exists. A possible physical justification
could be a breaking of conformal symmetry so that the states of given con-
formal weight n =

∑
ni associated with the states

∏
Lni |n = 0〉 are have

different number theoretic ”energies” depending only on the number r of
integers ni in the partition.

One can consider two variants of the number theoretical thermodynam-
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ics.
a) In the 4-adic case n = 0 and n = 1 aminoacids and codons correspond

to DNAs labelled by same integers and are thus in a special role. The number
theoretical thermodynamics [L3] is able to reproduce the genetic code and
its variants by assuming that the integer valued Boltzmann weights of the
thermodynamics are integers in a suitable range tailored by evolution in
order to maximize the number theoretical negentropy. Boltzmann weights
are assumed to be arbitrary integers in some range rather than powers of
some prime so that genuine p-adic thermodynamics for some prime is not
in question.

b) The 5-adic thermodynamics is favored by the fact that there are no
special aminoacids now (n = 0 and n = 1). Preliminary calculations suggests
that the 5-adic thermodynamics can be reduced to that for the 2-codons
defined by the first two nucleotides labelled by integers n2) = n0+n15, ni 6= 0
belonging to the range [6, ..., 24]. The integer valued Hamiltonian h(P ) for
the thermodynamics of partitions P of n2) and defining Boltzmann weights
5h(P ) would depend only on the number r of summands in the partition P
of n as n =

∑r
k=1 nk. The dependence of the coded aminoacid on the third

letter of the codon would be coded by the integer valued inverse of the 5-
adic temperature T5 = 1/n. A-C and G-U symmetries would correspond to
the symmetry T5(r, k) = T5(r, 5 − k) and the breaking of these symmetries
would be due to the variation of temperature. The temporal variation of T5

would explain the fact that for some variants of code same codon can code
for either an amino-acid or stopping sign [5, L3].

2.4 Divisor code

The idea of divisor code discussed in [2] is inspired by the following obser-
vations.

a) Consider the number N(n) of integer divisors for integers n in the
range 1-20 corresponding to aminoacids.

b) Denote the number of integers n ≤ 20 for which the number of divisors
is k by B(k). Also stopping sign is counted as an aminoacid and n = 0
corresponds to aminoacid also. This number N(k) varies in the range 1− 6.
B(k) has the values (1, 8, 2, 5, 1, 3) where k runs from 1 to 6.

c) Denote by A(k) the number of aminoacids coded by k DNA codons.
A(k) has the values 2, 9, 2, 5, 0, 3.

The spectrum of A(k) is very similar to that of B(k) and this raises the
question whether one could understand genetic code as a divisor code in the
sense that the degeneracy of aminoacid would be dictated by the number of
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the integers n ≤ 20 coding it. One might also ask whether the aminoacids
which are abundant and thus important are coded by integers with a large
number of divisors. Also one can ask whether the divisor structure possibly
correlates with the structure of the aminoacid.

Divisor code in this form would be only approximate and one can wonder
could try to imagine some simple symmetry breaking mechanism. In this
respect the crucial observations might b e following.

a) The number of DNAs needed to realize divisor code would be 66
instead of 64.

b) The most natural manner to break the symmetry is to drop the 2
codons from the codons coding for 5-plet which would thus become 3-plet.
This would mean that one would have 3 3-plets instead of 2. Also the
amino-acid corresponding to 0 is lacking.

c) The resulting 3-plet can be split further to 2-plet and 1-plet and this
would give just the correct degeneracies. 5-plet corresponds to integer n =
16 and its product compositions (16, 1), (1, 16), (2, 8), (8, 2), (4, 4) correspond
to the DNAs coding for it. (4, 4) would naturally correspond to singlet.

The attempts to combine this approach with geometric and number the-
oretic models have not however led to a satisfactory model for the genetic
code.

a) The labelling of aminoacids by primes is not consistent with this idea
unless the divisors are associated with an integer labelling some DNA coding
for the aminoacid and having values outside the range n ≤ 20.

b) The presence of n = 0 codon is un-natural in this framework which
suggests that 5-adic labelling of codons might be more appropriate.

The idea that the number of divisors for the integer characterizing some
DNA coding for a given aminoacid is however too beautiful to be given up
and perhaps the best manner to to proceed is to try to generalize it and try
to fuse it with other approaches. Also one could try to identify the reason
why for the divisor code.

2.5 Group theoretic interpretation of the divisor code

The basic question is why the decompositions of integer n characterizing one
of the DNAs coding for a given aminoacid labelled by prime would determine
the number of DNAs coding for the aminoacid. The fundamental role of
discrete subgroups of rotation group in quantum TGD [A8, A9] suggests
that finite subgroups H ⊂ G of G ⊂ SU(2) are involved with the code.
Finite symmetry groups are indeed naturally associated with codes and the
first observation is that product decompositions of integer n correspond
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naturally to the decompositions of an Abelian group G order n to products
of subgroups with orders r and s, n = r × s.

The hypothesis is that integer n characterizing the aminoacid corre-
sponds to the order of G and that the factor pairs (r, s) of n = rs correspond
to its subgroups Hr ×Hs ⊂ G. The codons coding for amino-acid charac-
terized by n would correspond to a normal sub-groups of G in general case
and to any subgroup in the Abelian case. The simplest identification of G
is as the cyclic group Zn. That the product decompositions (r, s) and (s, r),
r× s = n must be counted as separate can be understood if a wave function
invariant under Zr = Zn/Zs characterizes the codon labelled by (r, s). Zn

would naturally act as a symmetry group in the discrete fiber of the fiber
bundle defined by the DNA space and defining a discrete flow in the fiber.
The p-adic prime p assigned to the amino-acid could in turn characterize
the p-adicity of corresponding space-time sheet [TGDpad].

The physical interpretation suggested by TGD and to be discussed later
is that the wave functions of (say) free electron pairs (possibly Cooper pairs)
defined in the set of points defined by the orbit of Zn ⊂ Ga are invariant
under the subgroup of Zr = Zn/Zs ⊂ Zn for DNA labelled by (r, s), r×s = n.
Thus the codons coding for an aminoacid having Zn as a symmetry group
would be characterized by wave functions for free electron pairs transforming
under representations of Zn and remaining invariant under Zr ⊂ Zn and thus
reducing to representations of Zs. Note that r = 1 corresponds to all irreps
of Zn and r = n to singlets under Zn.

2.6 Is the fusion of geometric, thermodynamical, and divisor
code approaches possible in the 5-adic case?

A very attractive general idea is that genetic code could be understood in two
dual manners: as an assignment n → p(n) and as an assignment p → n(p).

a) Genetic code could be understood in terms of a 5-adic thermodynam-
ics for the partitions of integers characterizing codons. Here 6 ≤ n2) =
n0 + n15 ≤ 24, nk 6= 0, labels the 2-codons formed by the first two letters of
the codon. This approach would predict the assignment n → p(n) once the
number theoretic thermodynamics is specified.

b) Genetic code could be understood as a geometric imbedding p → n(p)
of aminoacid space labelled by 20 primes 31 ≤ p < 124 to DNA space
such that one has n(p) = p if possible. This cannot the case for 4 primes
(p = 53, 79, 101, 103). Also the interpretation as an induction of number
theoretical bundle structure over amino-acid base space from DNA space
is possible. n(p) = p constraint obviously poses strong constraints on the
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model but it turns out that it is possible to satisfy these constraints for other
than exceptional primes.

c) Also the basic idea of the divisor code could be included to the model
via the condition that the number of divisors of the integer n2) for one of the
DNAs coding for a given aminoacid equals to the number of DNAs coding
for the aminoacid. There would be thus two labellings of aminoacids so that
the model would become highly predictive.

The natural starting point is the vertebral mitochondrial code with full
A ↔ C and G ↔ U symmetries and one could interpret the breaking of these
symmetries in the case of eukaryote code in terms of the context sensitivity
characterized by the number theoretic temperature T5. The large number
of constraints raises the hope that a rather unique code could result. It will
be found that for the number theoretic Hamiltonian depending only on the
number partitions r of the integer n2) characterizing the first two letters of
the 5-adic codon, only 4 solutions to the conditions can be found in the set
of N ∼ 1030 candidates for h(r).

3 5-adicity or 4-adicity?

It seems that 5-adic representation of A− C and T −G symmetries allows
the unification of the geometric view about genetic code with the number
theoretic thermodynamics view and the idea of the divisor code.

3.1 The problems of the 4-adic model of the divisor code

The 4-adic model for the divisor code has some problems.
a) 4-adic model is not consistent with the assumption that the set of

DNAs coding for given aminoacid contains both the integer characterizing
the degeneracy of the aminoacid as a number of its divisors and the codon
labelled by the prime labelling the aminoacid. Hence the geometric realiza-
tion must be given up unless one assumes that the primes associated with
aminoacids associated with columns not containing primes are mapped to
the integers in the columns by imbedding map. Even this option fails.

b) It is not easy to understand the emergence of singlets without assum-
ing breaking of the number theoretical symmetries.

c) The proposed TGD inspired topological interpretation of the divisor
code is not consistent with the presence of n = 0 codons. Also n = 1 codons
are problematic.

d) There is no obvious connection with the maximization of the number
theoretic negentropy assigning primes to aminoacids. 5-adic thermodynam-
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ics can do this and one could have dual descriptions. Geometric description
in terms of imbedding of aminoacid space to DNA space (assigning DNAs
to aminoacids) and thermodynamics description in terms of 5-adic thermo-
dynamics assigning aminoacids to DNAs.

3.2 5-adic model works for thermodynamics based on parti-
tions

5-adic variant of the model can overcome the problems of the 4-adic model.

3.2.1 Basic assumptions

a) Stopping codons do not correspond to formal amino-acids. The natural
hypothesis is that the stopping codons do not possess negentropy maximizing
prime in the range considered.

b) The question is whether conjugation k → 5−k for the last nucleotide
corresponds 1) to DNA conjugation as in [1] or 2) to a symmetry of the last
codon. The naive guess would be 1). The guess turns out to be wrong since
it implies that 3 4-plets contain symmetry related primes so that the number
of aminoacids would be reduced by 3 due to the n → n + 50 symmetry of
the last nucleotide. On the other hand, k → 5 − k as a representation of
A ↔ C and G ↔ U symmetries takes odd integers to even integers so that
there are no problems.

c) DNA codons correspond to 5-adic integers in the range [31,124] having
no vanishing 5-digits. Aminoacids are labelled by the 20 primes in the same
range. They are mapped to DNA triplets. For 16 primes this imbedding
is just the identification n(p) = p. The 4 ”outsider” primes 53, 79, 101, 103,
which have some a vanishing 5-digit, have necessarily n(p) 6= p. The first
guess is that the outsider primes 53, 79, 101, 103 correspond to aminoacids
that are somehow special. It turns out that a possible identification for
the aminoacids is as Trp, Lys, Met, Gln but that Lys,Gln pair can be re-
placed by any pair in the set {Gln, Lys,Glu}. One could also argue that
the aminoacids corresponding to 53 and 103 = 53 + 50 should be related
by some kind of symmetry. Trp and Met indeed have the comment feature
that a codon coding for them can also act as stopping codon. On the other
hand, also Lys, Gln, and Glu share the property of being polar aminoacids.

3.2.2 Further constraints

The observation that there are two 4-columns containing no primes when
combined with some facts about the genetic code and its variants give strong
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constraints on the code.
a) One of the prime-free columns must correspond to shared Ser-Arg

column which transforms to Ser-Stop column for mitochondrial code. Oth-
erwise one prime coding for an aminoacid would be lost.

b) In the case of the yeast mitochondria Thr is coded 8 times and Leu
only twice. This forces the conclusion that second prime-free 4-column cor-
responds to Leu.

c) Since Leu must be coded by prime, Leu-Phe 4-column must corre-
spond to the second 4-plet containing two primes. Hence the two 4-columns
containing 2 primes give rise to three doublets. 6 additional doublets for
eukaryote code and 9 additional doublets for mitochondrial code must be
identified.

d) Thr 4-plet should contain n possessing 8 divisors. Only 3 4-columns
contain n = 8 and correspond to 321, 131, and 231 columns.

3.2.3 Detailed identification of the code

Consider now a more detailed identification of the code.
a) Mitochondrial code is obtained as follows. 4 outsider primes which

do not label DNAs directly are imbedded into 4-columns containing single
prime. This gives 8 doublets altogether. Stopping codons in the 4-column
containing Tyr and corresponding prime give one additional doublet so that
a correct number of doublets result.

b) The breaking of the mitochondrial code to eukaryote code is easy to
understand in the proposed framework. Trp and Met become singlets and
Ile becomes triplet so that 9 doublets result.

c) Outsider primes would in this model correspond to Gln, Lys, Trp,
Met. Gln and Lys could be replaced with any pair in the set {Gln,Lys,Glu}
for the simple reason that corresponding aminoacid doublets cannot be dis-
tinguished from each other number theoretically. The identifications of the
integers associated with aminoacids coded by 4 entire 4-column (Val, Ala,
Pro, Gly) are unique apart from 4! = 24 permutations of these aminoacids.
It should be noticed that Lys,Gln,Glu belong to the group of 11 polar
aminoacids and Met and Trp belong to the group of 8 hydrophobic aminoacids.

d) The multiplet containing Met is unique since there is only single codon
(n = 112 = 121) for which the number of divisors is 3.

e) One can say that Ile and Met compete: either Ile3-Met results when Ile
wins. Ile2-Met2 results when Met wins. One can argue that Trp as outsider
prime can also correspond to singlet or that Stop can ”eat” any any prime

13



and reduce the degeneracy. 5-adicity is broken for the first two nucleotides,
which is not surprising.

These number theoretic constraints do not allow a unique identification
of the code but pose considerable restrictions. The following table represents
one example consistent with these conditions. Note that the table does not
fix how the primes 53, 79, 101, and 103 are assigned to Trp, Lys, Met, and
Gln. Trp and Met are indeed special since they can be replaced by stopping
codon some variants of the code.

It will be found that under rather general conditions (roughly 1030 can-
didates for the Hamiltonian h(r) characterizing the thermodynamics of par-
titions) there are only 4 choices of h(r) reproducing the eukaryote code,
vertebrate mitochondrial code as well as other variations of the code. If
one requires that the polar aminoacids Lys and Gln (or any pair in the set
{Gln,Lys,Glu}) correspond to the conjugation related primes 53 and 103
only single solution for h(r) is found. The 5-adic thermodynamics based on
spin-spin interaction fails as do also other simple models.
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114 106 4 UG 214 107 2 GU 314 108 GC 414 109 2 GA
113 81 Trp 213 82 4 Val 313 83 2 Ala 413 84 Glu
112 56 4 Cys 212 57 4 312 58 412 59 2 Asp
111 31 2 211 32 311 33 4 411 34 4

124 111 4 GG 224 112 UA 324 113 2 AC 424 114 6 CG
123 86 4 Gly 223 87 4 Stop 323 88 8 Thr 423 89 2 Arg
122 61 2 222 62 4 Tyr 322 63 4 422 64
121 36 221 37 2 321 38 4 421 39 4

134 116 6 CC 234 117 6 UC 334 118 4 AA 434 119 4 AG
133 91 4 Pro 233 92 6 Ser 333 93 4 Lys 433 94 4 Arg
132 66 8 232 67 2 332 68 6 Asn 432 69 4 Ser
131 41 2 231 42 8 331 43 2 431 44 6

144 121 3 AU 244 122 4 UU 344 123 4 CA 444 124 6 CU
143 96 Met 243 97 2 Leu 343 98 6 Gln 443 99 6 Leu
142 71 2 Ile 242 72 Phe 342 73 2 His 442 74 4
141 46 4 241 47 2 341 48 441 49 3

Table 1. An example of a code obeying approximate 5-adic symmetry
k ↔ 5− k with respect to the last codon. Given are the integers associated
with the codons of given 4-column in 5-adic and decimal notion, the number
of divisors appearing if it belongs to the range of allowed values, and the
2-codon associated with the 4-column. Note that 5-adic symmetry for the
first to nucleotides is broken.

4 5-adic thermodynamical model for the genetic
code

The challenge is to guess the number theoretic Hamiltonian characterizing
the thermodynamical model and the dependence of the 5-adic temperature
T5 on third nucleotide describing the splitting of 4-plets to doublets and
further splitting of the doublets in the case of eukaryote code. There are
two options concerning the choice of the Hamiltonian.

a) The Hamiltonian depends only on the number r of integers in the
partition n2) =

∑
nk of 6 ≤ n ≤ 24 of integer n2) = n0 + n15 characterizing
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the first two nucleotides of the codon. Hamiltonian is tailored by evolution
to reproduce the genetic code and its variants.

b) Hamiltonian is a direct analog of spin spin interaction J
∑

nknl with
nk interpret as spin associated with nk Cooper pairs.

4.1 The simplest model for the 5-adic temperature

The simplest model for 5-adic temperature applies irrespective of the num-
ber theoretic Hamiltonian h and relies on the assumption inspired by the
comparison of the mitochondrial and eukaryote code tables.

a) T5(n3) = T5 hold true for common 4-plets, 4-plet parts of 6-plets, and
6-plets of the mitochondrial and eukaryote codes.

b) T5(n3) = T5(5−n3) holds true for common 2-plets (A-C and T-G sym-
metries with respect to the third nucleotide) of eukaryote and mitochondrial
code and for all 2-plets of mitochondrial code.

c) For eukaryote code this symmetry of 5-adic temperature would fail
for Ile3-Met, Cys2-Stop-Trp and only for the second pair of values of n3

corresponding to Met-Met→ Ile-Met and Trp-Trp→ Ttop-Trp [n3, 5−n3) =
(2, 3)]. Ser-Stop-Ser-Stop to Ser-Arg-Ser-Arg transition would in turn be
induced by the change of 5-adic temperature. Stop would correspond to a 5-
adic temperature for which no prime coding aminoacid divides the partition
function.

The condition that the model reproduces correctly the n → p(n) corre-
spondence to be discussed later in principle allows to fix number theoretic
Hamilton and T5(n3) to a high degree.

4.2 The simplest possible model for thermodynamics

Before dwelling into complex calculations it is useful to ask what could be
the simplest model for the 5-adic thermodynamics.

a) Calculational simplicity would suggest that the partition function
must be as small as possible and thus satisfy Z(n) < 125. This restric-
tion also maximizes the probability that the prime divisors are in the range
31 ≤ p ≤ 113 with stopping codons involving only divisors p < 31. This
together with the 5-adicity at the level of partition function would sug-
gest that the definition of Z(n) should involve 5-adic cutoff in the form
Z(n) → Z(n) mod 53. The natural constraint on the values h of the num-
ber theoretical Hamiltonian would thus be h ∈ {0, 1, 2} ∈ Z3. Modulo three
arithmetics fits also nicely with the triplet structure of codons.
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b) In this model the effect of changing 5-adic temperature form T5 = 1
to T5 = 1/n, n = 1, 2 would be expressed as h(r) → n × h(r). Only
two possible 5-adic temperatures would be possible and the symmetries of
the vertebrate mitochondrial code would be predicted automatically. The
symmetry breaking down to eukaryote code could be described in terms of
5-adic temperature if one allows formally infinite temperature for which one
would have effectively h(r) → h(r) = 0 so that partition function equivalent
with Z = 1 would result and the codon in question would code for stopping
sign. This is indeed the case for the codon coding originally Trp. For the
breaking of Ile-Met doublet the splitting to triplet and singlet can be also
understood as the dependence of T5 on codon in symmetry breaking manner.

c) The simplest possible model would correspond to Z(n) = p(n) =∑
pk5k so that pk would have interpretation as degeneracies of states modulo

5: this would imply that the doublets would correspond to primes related
by exchange of p1 and p2, which does not make sense. Hence the integers
pk cannot directly correspond to the degeneracies of states with different
energies and the partition function must be obtained via Z → Z mod 125
prescription from a more complex partition function having values Z > 125.
The three digits pk for 5-adic code and Z3 valuedness of h(r) might relate
naturally to 3-letter structure of codons.For n = p(n) one would simply
have Z(n) = n = p(n). For the four exceptional aminoacid primes p =
53, 79, 101, 103 this would not hold true. The most general model would
allow small integer k ≤ 4 as an additional factor of Z(n) ≤ 124.

Unfortunately, this simple model does not allow any obvious number
theoretical realization. In particular, the models based thermodynamics of
partitions and on spin-spin interaction fail with Z3 valued h(r) and Z125

valued Z(n). The simplicity and explanatory power of the model encourage
however to keep mind open for the existence of this kind of model.

4.3 Number theoretic Hamilton depending on the number
of partitions of integer characterizing DNA

The number theoretic model for the genetic code discussed in [L3] was based
on the assumption that the number theoretic Hamiltonian depends only on
the number of summands in the partition n =

∑
k nk.

Generalizing to the recent context, the Hamiltonian h(r) for the 5-adic
thermodynamics should depend only on the number r of summands in the
partition n2) =

∑r
k=1 nk. The deviations from the standard code would

be explained in terms of the variation 5-adic temperature which has values
T = 1/n, n positive integer, implying Boltzmann weights 5h(r)/T5 . The

17



fact that same codon does not always code same aminoacid [5, L4], could be
understood in terms of temporal variation of 5-adic temperature. A possible
interpretation is in terms of a breaking of conformal invariance characterized
completely the number r of subsets in the partition.

A further assumption motivated by 5-adicity is the replacement X ≡
h(r)/T5 in Boltzmann weight with X mod N , where N characterizes the
highest power of 5 appearing in partition function. N = 3 would be the
minimal option but it turns that only N = 25 works. It will be assumed
that evolution has gradually tailored h(r) so that the observed genetic code
maximizes for a given DNA the p-adic information measure defined by the
prime p(DNA) coding the corresponding amino-acid in practice this means
that partition function is divisible by a power of p(DNA).

The interpretation in terms of the number of sub-condensates of Cooper
pairs containing nk spin 1 Cooper pairs is an alternative interpretation and
would look attractive physically but in this case the Hamilton depending on
the number r of partitions only does no look natural. The number theoretic
Hamiltonian would depend on the number r of bound states only if the
interaction energy E(nk, nl) between two sub-condensates with nk and nl

Cooper pairs is a constant integer E(nk, nl) = E, so that the interaction
energy between sub-condensates would behave as r(r − 1)E mod N . This
could give rise to a rather random looking behavior of h(r) as a function of
r. The modulo arithmetic constraint would restrict considerably the number
of choices of h(r). This model does not reproduce realistic genetic code.

4.3.1 Formula for the partition function

The formula for the partition function is given as

Z =
∑
r

d(n, r)5H(r) ,

H(r) =
h(r)
T5

mod 25 . (1)

T5 = 1/n varies in the range n ∈ [1, 24].
The partition numbers appearing in are conveniently calculated by using

the recurrence relation [6]

d(n, r) = P (n, r) = P (n− 1, r − 1) + P (n− r, r) , P (n, 1) = 1 .

(2)

18



4.3.2 The structure of the calculation

The flow of calculation proceeds along the rows of the code table as given
in Table 1 coding for the constraints coming from the assumption that the
number of divisors for of the integers labelling DNAs is same as the degener-
acy of corresponding aminoacid and from the consistency with the geometric
model of the code.

a) It is assumed 0 ≤ h(r) ≤ hmax = 2 for r > 1. h(1) = 0 can be assumed
without a loss of generality if one assumes that r = 1 (trivial partition)
corresponds to the most probable minimum energy partition in the sense of
5-adic thermodynamics. This implies that 323 candidates for h(r) must be
scanned. All possible 4! = 24 assignments of Trp, Lys, Met, Gln with the
primes p = 53, 101, 79, 103 which do not label codons are considered.

b) At the first step those guesses for h(r), r ≤ 6, for which the DNA-Cys
correspondence with p(Cys) = 31 is reproduced and stored.

c) At the next step calculation branches to four separate calculations
corresponding to the four possible values of p(Trp) ∈ {53, 101, 79, 103}. 5-
adic temperature T5 is varied and it is found whether the p(Trp) can be
reproduced for some value of T5 ∈ {1, 2, ..., 24}. If this is not possible, the
candidate for h(r), r ≤ 6 is rejected. After this the calculation proceeds for
given p(Trp) assignment through next values of h(r) to r = 18 where one
checks whether p(Asn) = 43 can be reproduced. In the transitions to new
row corresponding to r = 10, 11 and r = 15, 16 two values of of 0 ≤ h(r) ≤ 2
appear and bring in additional degrees of freedom. In Glu−Asp column at
the end of the first row T5 is varied to see whether also p(Asp) = 59 can be
reproduced.

d) After this the calculation for given value of p(Trp) branches to 6 al-
ternatives corresponding to different assignments of remaining exceptional
primes to Lys, Met,Gln. Since Arg-Ser four-column does not give any con-
ditions the values of h(r) for r = 19, 20, 21 appear as free parameters. This
part of calculation is especially critical since the first 4-columns of the last
row of the table contain only doublets. The last 4-column (Leu) correspond-
ing to r = 24 does not pose any conditions on h(24) unless one requires that
also n = 49 gives partition function for p(Leu) = 97 is the maximizing
prime.

4.3.3 Results

The difficulties involved with the numerical computation were considerable
since only University MATLAB was available and for the extensive compu-
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tations involved its functioning turned out to be somewhat unreliable and
reasons for this could not be identified. 22 solutions to the conditions ex-
pressed in Table 2 has been found from the set of about 1030 candidates,
and have been checked separately to satisfy all the conditions.

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
tlmg tglm tmgl tlgm tgml tmlg
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
ltmg gtlm mtgl ltgm gtml mtlg
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
lmtg mgtl gltm lgtm gmtl mltg
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
lmgt glmt mglt lgmt gmlt mlgt

Table 2. There are 24 different solution types depending on which per-
mutation xyzu of (Trp,Lys,Met,Gln) corresponds to the exceptional primes
(53, 79, 101, 103). For instance, lmtg means (Lys, Met, T rp,Gln) → (53, 79, 101, 103),
and tglm means (Trp, Gln, Lys, Met) → (53, 79, 101, 103). It is convenient
to label the 24 possibilities by pairs of integers (m,n). m = 1, 2, 3, 4
according to whether Trp,Lys,Met or Gln corresponds to p = 53. The
second integer n = 1, ..., 6 specifies which of the six permutations of re-
maining three aminoacids corresponds to (79, 101, 103) in a manner ex-
pressed by the table. For instance, for (m,n) = (1, 1) ↔ (tlmg) codes
for (Trp, Lys, Gln, Met) → (53, 79, 101, 103).

The 11 number theoretic Hamiltonians h(r) for r = 1, 2, ...., 23 are given
in the table below with conventions expressed in the Table 2.
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m 1 1 1 1 2 3 3 3 3 3 4
n 2 2 5 5 2 1 1 1 2 6 2
r h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

1 0 0 0 0 0 0 0 0 0 0 0
2 1 1 4 5 3 2 0 0 0 0 0
3 3 3 24 23 11 0 10 10 13 13 13
4 19 19 12 24 2 14 16 16 4 4 4
5 3 3 13 15 9 18 21 21 12 12 12
6 0 0 19 6 5 2 9 9 12 12 12
7 1 1 12 4 14 5 16 16 9 9 9
8 15 15 16 0 10 18 20 20 7 7 7
9 17 17 7 15 9 2 14 14 12 12 12
10 3 3 17 10 15 12 14 14 16 16 16
11 17 17 9 22 3 1 24 24 5 5 5
12 8 8 14 12 18 3 4 4 11 11 11
13 4 4 24 3 17 12 5 5 19 19 19
14 16 16 5 11 19 6 4 4 18 18 18
15 13 13 9 19 3 16 1 1 7 7 7
16 11 11 20 11 20 7 2 2 7 7 7
17 23 23 14 5 17 22 14 14 21 21 21
18 7 7 13 3 4 1 5 5 6 6 6
19 14 16 1 11 8 6 11 14 9 4 4
20 16 14 1 22 22 1 6 12 7 17 23
21 6 19 17 11 19 12 13 15 13 23 22
22 14 0 6 22 2 7 19 5 15 21 16
23 13 12 6 17 7 2 7 12 12 4 15

Table 3. The table represents the 11 solutions found for the Hamiltonian
of partition thermodynamics consistent with the code table represented in
Table 1. The integer pair (m,n) given in the first two rows codes for the cor-
respondence between aminoacids (Trp,Lys,Met,Gln) and exceptional primes
(53, 79, 101, 103) according via the correspondence given in Table 2.

One can consider additional symmetry assumptions reducing the number
of solutions.

a) One might argue that the ”unstable” aminoacids Trp and Met nat-
urally correspond to the conjugation related primes 53 and 103. The are
only 2 solutions (h1 and h2 in Table 3) corresponding to the assignment
(Trp, Met) → (53, 103) or vice versa (the integer pairs (m,n) corresponding
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to txym and mxyt in Table 2 are (1,2),(1,4),(4,3),(4,6)). These two solutions
differ only for last 5 values of r.

b) One might also argue that the polar aminoacids Lys and Gln (or
any pair in the set {Lys, Gln, Glu}) correspond to the conjugation related
primes 53 and 103 (the integer pairs (m,n) corresponding to lxyg and gxyl in
Table 2). There are 3 solutions (h6, h7 and h8 in Table 3) corresponding to
the assignment (Lys, Gln) → (53, 103)orviceversa (the integer pairs (m,n)
corresponding to txym and mxyt in Table 2 are (2,1),(2,4),(3,1),(3,4)).

That not too many solutions exist to the conditions together with the
fact that the model is consistent with the basic ideas of geometric code and
of divisor code and results from 5-adic thermodynamics, raises the hope that
something more than a mere complex parametrization of the genetic code
might be in question. For r = 2 h(r) only the values h(r) ≤ 5 have been
scanned (the reasons were the strange problems that made the continuation
of calculations very difficult) so that a portion 6/25 = 24 per cent of all
possible candidates for h(r) are scanned. The number of solutions found is
11. If the solutions are distributed evenly, the estimate for the total number
solutions is about 45.

The 5-adic temperature is T5 = 1 for all lower doublets in the code table
(the two smallest values of n(DNA) in a given 4-column). The values of 5-
adic temperature for the upper vertebrate mitochondrial doublets are given
by the table below for some cases. For eukaryote code symmetry breaking
means only a change of 5-adic temperature for the symmetry breaking codon
so that it codes for either Stop as in case of Trp-Cys doublet or for Ile
instead of Met. Also the context dependence observed for some variants of
the genetic code [5] can be understood in terms of a temporary change of
the 5-adic temperature. Note however that the aminoacid coded temporarily
does not belong to the group of standard aminoacids.

For the stopping codon 1/T5 = 2 is the minimum temperature implying
that no prime 31 ≤ p ≤ 113 divides the partition function.
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m n β(1) β(4) β(11) β(13) β(14) β(15)
1 2 19 11 6 5 24 21
1 2 19 11 6 5 23 7
1 5 21 5 15 6 4 7
1 5 15 13 10 23 21 13
2 2 10 16 23 15 16 21
3 1 6 17 16 17 3 19
3 1 10 2 23 17 20 11
3 1 10 2 23 4 4 12
3 2 5 6 5 18 18 7
3 6 5 6 5 8 23 16
4 2 11 6 5 24 23 18

Table 4. Inverse 5-adic temperatures β = 1/t5 for doublets of the verte-
brate mitochondrial code. The notational conventions and the ordering of
solutions are same as in the previous table.

4.4 Number theoretical Hamiltonian identified as spin-spin
interaction

The hypothesis that Hamiltonian depends on the number r of summands
in the partition is of course only a very simple working hypothesis allow-
ing a relatively easy numerical search of the Hamiltonian (in the original
model one had n ≤ 63 so that rather large numbers of partitions had to be
considered). If one takes seriously the idea about sub-condensates of spin
1 Cooper pairs, one could argue that the interaction energy between blocks
of Cooper pairs is spin-spin interaction proportional to the product of net
spins of electrons and is therefore of form E(nk, nl) = Jnknl, k 6= l. A
number theoretical analog of rather spin glass variant of Ising model would
be in question.

In this case one would have h = J
∑

k,l nknl =
∑

k nk(n − nk) = n2 −∑
k n2

k and thermodynamically equivalent with h = J
∑

k n2
k. This Hamilto-

nian or rather, its modulo N variant (N = 3 in the minimal case), would
distinguish between partitions with the same value of r. In the recent model
one has 6 ≤ n2) ≤ 24 so that the numbers of partitions are quite reasonable.

What makes this Hamiltonian so attractive would be its clear physical
interpretation and involve a minimal amount of ad hoc elements.

The simplest working option is that third nucleotide affects only the
5-adic temperature so that one would have
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h(n1, ..., nr) =
J

T5
×

∑
pairs

nknl ,

where one has T5 = 1, 2. This interpretation conforms with the idea about
living matter as spin glass like structure for which interaction strengths for
spin-spin interactions are variable parameters. This would also conform with
the general vision about TGD Universe as a four-dimensional spin glass like
structure [11].

4.4.1 Calculation of the partition function for a model based on
spin-spin interaction

The task is to calculate the partition function Z(T (n3)) =
∑

P 5h(n2,P )/T5 .
To achieve this one can generalize the recursion formulas for the numbers
d(n, r) of partitions of n to sum of r terms.

a) One can arrange the integers in the partition so that one has always
nk ≤ nk+1 and start the recursive calculation from hr(1, ....1, n − r + 1) =
(n− r + 1)(r − 1).

b) This gives rise to general recursion formula given by

hr(n1, ..., nr−1, n− r + 1− k1) = J(n− r + 1− k1)(r − 1 + k1)
+ hr−1(n1, ..., nr−1) . (3)

Using this recursion formula one can express the formula for Hamiltonian
as

1
J hr(kr + 1, kr−1 + 1− kr, ..., k2 + 1− k3, k1 + 1− k2, n− r + 1− k1)

= (n− r + 1− k1)(r − 1 + k1) + (k1 − r + 2− k2)1)(r − 2 + k2)

+... + (ks−1 − r + s− ks)1)(r − s + ks) + ... + (kr−1 − kr)kr

(4)

In this formula h → h mod 25 operation is not written explicitly.
The expression for the partition function can be written as

Z(n) =
∑
r

Z(n, r)

Z(n, r) =
∑

k1,....,kr

5hr(kr+1,kr−1+1−kr,...,k2+1−k3,k1+1−k2,n−r+1−k1) . (5)
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The lower and up upper bounds for ks in the summation can be deduced as
follows. An upper bound for k1 obtained from the condition rk1 = n and
gives k1 ≤ kmax = [n/r] where [x] denotes the integer n ≤ x nearest to x.
The corresponding upper bound for ks reads as ks ≤ [ks−1/r − s + 1]. A
lower bound for ks comes from the requirement ns ≥ 1 and gives ks ≤ ks−1.

To avoid problems caused by the fact that the numbers for various loops
are dynamical, one can use recursion to calculate Z(n, r) such that the mod-
ule in question calculates h(...) by calling itself repeatedly. What simplifies
the calculation dramatically is that it is not necessary to store the data about
the values of Hamiltonian since partition function is all that is needed.

a) At sth level the module first adds to the Hamiltonian of a given branch
the contribution from that level and after that adds the contributions from
from (s + 1)th level.

b) The calculation branches which means a a loop over the values of ks+1.
This means that module calls itself at each step of the loop to calculate the
contributions of the next level to the Hamiltonian at a given branch.

c) The module adds also to Z the contribution from (s + 1)th level is
added. The addition is trivial until the rth level is reached and all contribu-
tions to the Hamilton are known.

d) At the last level of tree the situation looks like follows. At given
branch of the tree at (r − 1)th level the module adds in loop-wise manner
to Z the contributions from rth level for that branch. After the return to
(r − 2)th branch next branch at (r − 1)th level is selected and same process
is repeated. Etc...

e) In order to avoid overflow problems it is safest to express the terms
of the partition function in pinary series with respect to the p-adic prime
31 ≤ p ≤ 113 considered and perform the addition of contributions to Z in
terms of the pinary series.

4.4.2 Structure of the calculation

The general structure of the calculation is following.
a) Perform a loop over n labelling the 2-codons and find for each of them

the prime p for which negentropy Sp(n) is minimum and look whether for
a suitable choice of T5 the resulting assignment n → p(n) is consistent with
the geometric model of the code and with the basic idea of the divisor code.

b) For a given n perform a loop over allowed values of p to see whether
anyone of them appears as a divisor of the partition function and which of
them maximizes the number theoretic negentropy. Unless this occurs the
codon in question is identified as a stopping codon. The proposed geometric
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model of course fixes the integers n associated with the stopping codon.
c) For given n and p perform a loop over the values of r and sum their

contributions to the partition function Z(n, r) by applying the recursive
procedure described in the previous subsection. In order to avoid over-
flow problems (possibly appearing in the case of MATLAB), the calculation
must be performed for each value of p separately using pinary expansions
for Z(n, r). If Hamiltonian belongs to Z3, overflow problems are of course
avoided automatically.

d) An alternative manner to view the calculation is to take the proposal
for the n → p(n) correspondence represented as a table at the end of previous
section as an input and by a suitable selection of 0 ≤ J(n2)) ≤ 2 try to
reproduce it. Note that the correspondence between primes 53,79,101,103
and aminoacids Trp, Met, Gln,Lys if not fixed by the model represented in
the table.

e) The most practical manner to perform the calculation is to take J = 1
and allow T5 to run from 1 to 2 for every value of n and look whether
the resulting spectrum of primes is consistent with the proposed n → n(p)
correspondence or possible modification of it. At the roughest level the
calculation serves as a test for 5-adicity that is whether the integer n =
n0 + n15 corresponds to prime of form n + 25 or n + 75.

4.4.3 Results

The proposed spin-spin interaction model allowing varying value of T5 can-
not reproduce the model summarized by Table 1. The roughest test for the
model is whether 5-adic description of A-C and T-G symmetries works. For
mod 25 thermodynamics with n = n0+n15 determining the thermodynamics
the fails to be consistent with the predictions of the simplest model.

5 A possible physical interpretation of various codes
in TGD framework

The inspiration for attempts to interpret physically the origin of various
codes in TGD framework (summaries of quantum TGD, TGD inspired the-
ory of consciousness, and TGD inspired view about quantum biology are
given in articles [9, 10, 11]) springs from the following ideas.

a) At fundamental level quantum TGD reduces to almost topological
quantum field theory at light-like 3-surfaces of H = M4 × CP2 having also
interpretation as random lightlike orbits of 2-dimensional partons, which can
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have arbitrarily large sizes. Quantum TGD involves fusion of real physics
and its p-adic variants relying crucially to the assumption that S-matrix
involves only data at intersections of real 2-surfaces and their p-adic coun-
terparts obeying same algebraic equations consisting of rational points and
and algebraic points in the algebraic extension of p-adic numbers charac-
terization physical states in question. These intersections consist of discrete
points giving rise to cognitive representations which should naturally relate
to the genetic code.

b) TGD based view about dark matter as a hierarchy of quantum co-
herent phases labelled by symmetry groups Ga × Gb ⊂ SU(2) × SU(2) ⊂
SL(2, C)×SU(3), where SL(2, C) is Lorentz group and SU(3) corresponds
to the gauge group of color interactions. These phases are characterized by
arbitrarily large values of Planck constants and are assumed to be responsi-
ble for the quantum control in living matter.

c) The generalization of the notion of imbedding space H = M4 × CP2

based on the geometric realization of the dark matter hierarchy and involving
a hierarchy of discrete sub-groups Ga ×Gb.

The basic idea is that the maximal cyclic subgroup Zn of Ga could
correspond to the group Zn assigned with aminoacid and corresponding
codons in the proposed group theoretic interpretation of the divisor code.
n would give the order of the maximal cyclic subgroup Zn ⊂ Ga acting as
symmetry group of wave functions of free electron pairs and (r, s), rs = n
could define a decomposition of Zn = Zr ×Zs with Zr leaving invariant the
electronic wave function.

5.1 Generalization of imbedding space and interpretation of
discrete bundle like structures

One should understand how the discrete number theoretical structures asso-
ciated with various realizations of the genetic code emerge from TGD based
physics. TGD suggests a very general geometric realization of the geometric
codes in terms of points in the intersection of p-adic and real space-time
sheets (actually a 2-D ”partonic” surfaces having arbitrarily large size) con-
sisting of algebraic points and of the TGD based generalization of imbedding
space obtained by gluing together infinite number of copies of the imbedding
space having singular bundle structure H = M4×CP2 → H/Ga×Gb, where
one has Ga ×Gb ⊂ SU(2)× SU(2) ⊂ SL(2, C)× SU(3).

Ga would manifest itself directly as discrete rotational symmetries of
biomolecules basically due the presence of dark matter having Ga as exact
group of rotational symmetries. Hence only Ga would be interesting in the
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recent case. In fact, the maximal cyclic subgroup Zn for arbitrary Ga is
in a special physical role and it might be possible to identify the group
characterizing aminoacid and DNA as this group.

The bundle structure H → H/Ga×Gb has singular points corresponding
to the points of H for which Ga×Gb or its subgroup acts as an isotropy group
leaving the point invariant. Quite generally, the singular points, in particular
those for which Ga acts as isotropies, are involved with the phase transitions
changing Planck constant and interpreted as a leakage of 3-surfaces between
sectors of H labelled by different groups Ga ×Gb.

The interpretation of Gr characterizing DNA as an isotropy of singular
point of bundle structure does not seem however natural. Rather, the wave
functions of (say) free electron pairs (possibly Cooper pairs) defined in the
set of points defined by the orbit of Zn ⊂ Ga could be invariant under
some subgroup of Zr ⊂ Zn for DNA labelled by (r, s), r × s = n. Thus
codons coding for an aminoacid having Zn as a symmetry group would be
characterized by wave functions for free electron pairs transforming under
representations of Zn and remaining invariant under Zr ⊂ Zn and thus
reducing to representations of Zs = Zn/Zr. Note that r = 1 corresponds to
all irreps of Zn and r = n to singlets under Zn.

5.2 A possible interpretation for the divisor code

Consider now a model for what might happen in the coding of aminoacid
by DNA.

a) Suppose that the maximal cyclic subgroup Zn ⊂ Ga acts as symme-
tries of ”dark” space-time sheets and wave functions of ”dark” free electron
pairs for the aminoacid and corresponding DNAs so that the 2-surfaces in
question are n-fold coverings of CP2 points by M4 points (corresponding to
positions of say 5 molecules in a cyclic molecule) and corresponding codons.
Free electron pairs could correspond to the dark matter in question.

b) Suppose that DNA characterized by n and its particular divisor r has
electronic wave functions invariant under Zr and thus forming irreducible
representations of Zs = Zn/Zr, n = r × s. The electronic wave functions
assignable to the aminoacid would in general transform according to some
irreducible representations of Zn =

∏
i Zpi , n =

∏
i pi, where same prime pi

can appear several times. This assumption would explain why the product
decompositions (r, s) and (s, r) are not equivalent.
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5.3 About the geometric interpretation for the thermody-
namics of partitions of n2)

Suppose that the maximization of the information content for the thermo-
dynamics for the partitions of the integer n2 = n mod 52 belonging to the
range [6, 24] and labelling 2-codons provides a dual manner to understand
the genetic code. n → n mod 25 would have an interpretation in terms of
reduction to a subset of the finite finite field G(5, 2) and would be natural
in 5-adic context.

One could try to interpret the modulo arithmetics in terms of the gen-
eralized notion of imbedding space.

a) One could label the points of M4 covering of CP2 by integers 0 ≤
m ≤ n. The sheets points m and m + k25 should be equivalent from the
point of view of mitochondrial genetic code so that Z25 equivalence classes
would give rise to n2) points.

b) A more concrete interpretation would be that first nucleotide along
gives rise to n0-fold covering, second nucleotide adds 5n1 sheets so that
n2) = n0+5n1-fold covering results, and third nucleotide adds n352 sheets so
that to n = n2)+n3×52-fold covering results. The sheets contributed by the
third nucleotide would not participate in the partition thermodynamics and
the third nucleotide would only determine the 5-adic temperature T5 = 1/n.

5.4 About the physical interpretation for the thermodynam-
ics of partitions of n2)

The 5-adic thermodynamics relies on the partitions of n2 = n mod 52. n2

could have interpretation both as a net conformal weight or spin associated
with spin one electronic Cooper pairs.

a) Modulo 52 property could be due to the invariance of electronic wave
functions under Z25 acting as rotations. There would be 25-periodicity of
physics in the covering, the analog of a lattice structure in angle degree of
freedom with sub-lattices forming dynamical units. Also quantum group
with quantum phase q = exp(iπ/25) implies the analog of lattice structure
in angle degrees of freedom.

b) Each equivalence class analogous to a sub-lattice with points hav-
ing distance of 25 units would effectively carry one unit conformal weight
or one unit of spin (L0 and iL0 act as infinitesimal scaling and rotation
respectively). At the concrete physical level the following alternative inter-
pretations suggest themselves.
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5.4.1 The interpretation in terms of conformal symmetry

The partitions of the integer n2) = n0+n15, ni 6= 0 would have interpretation
as partitions of the set of equivalence classes to a union of subsets with
the number nk of elements in the subset giving the total conformal weight
created by Lnk

rather than Lk
1. These partitions could be interpreted as

partitions of a molecular Z25 equivalence classes of building blocks of the
molecular structure with Zn rotational symmetry to subsets of basic building
blocks and Virasoro generators Lnk

would act on various building blocks.
A formation of bound states each binding single particle states associated
with nk sheets and created by L1 suggests itself. The reduction of Virasoro
algebra defined in Z to a Virasoro algebra defined in the finite field G(5, 2)
or in the ring Z25 is natural in this framework.

5.4.2 The interpretation in terms of decomposition to many-
particle states consisting of free electron pairs or Cooper
pairs

The fact that iL0 corresponds to rotations allows to consider also the in-
terpretation of the partitions in terms of decompositions of the state to a
product of angular momentum eigen states with values of Jz = nk. Basic
building blocks could have spin Sz = 1 so that codon would be characterized
by its total spin Sz = n2 = n mod 52 possible associated with dark Cooper
pairs with spin quantum number Sz = 1. The blocks of the partition would
be coherent sub-Bose-Einstein condensates of dark Cooper pairs and the
number theoretic Hamiltonian would characterize the change of energy like
quantity as this kind of state is formed.

This interpretation conforms with the general TGD based view about
living matter. High Tc superconductivity indeed plays a key role in TGD
based model of living matter [J1, J2, J3] and there is experimental evidence
that DNA can have anomalously high conductivity [8]. TGD based model
[J2] relies on the hypothesis that free electron pairs associated with the 5-
and/or 6-rings of sugars in the backbone of DNA correspond to dark matter
with Planck constant h̄ = nh̄0, n = 5 and/or n = 6. Also the observation
that the twist angle of single nucleotide in double helix is π/5 is suggestive of
5-adicity. Note that n = 5 defines the minimum value of n making possible
universal topological quantum computation and in [E9] it is proposed that
DNA and/or RNA could act as topological quantum computer.
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5.5 A possible interpretation for the p-adic prime labelling
aminoacid and DNAs coding it

The notion of field body or magnetic body is central for the TGD inspired
model of living matter [11, M3]. This notion is justified by so called topo-
logical quantization of classical fields making it possible to assign to a given
physical system a field body which is typically much larger than the physical
body. For instance, in case of brain the magnetic body is of astrophysical
size (EEG wavelengths are of order Earth size). Dark magnetic body con-
taining Bose Einstein condensates of ions with large value of Planck constant
would be the fundamental bio-controller utilizing biological body as a sen-
sory receptor and motor instrument [M3].

A possible interpretation for the p-adic prime labelling aminoacid and
DNAs coding for it could be as a characterizer of the effective p-adic topol-
ogy associated with their magnetic bodies and the genuine p-adic topology
for their p-adic counterparts obeying same algebraic equations. This is pos-
sible since for large values of Planck constant possibly associated with the
magnetic body the small p-adic primes could correspond to size scales of or-
der EEG wave lengths. Notice however that the p-adic primes characterizing
elementary particles are much larger. For instance, electron is characterized
by Mersenne prime M127 = 2127 − 1.

The preferred values of na and nb are given by ni = 2k ∏
Fi, where

Fi are distinct Fermat primes (only four of them corresponding to F =
3, 5, 17, 257, 216 +1 are known). The 2-adic hierarchy na = 2k could provide
a deeper justification for the p-adic length scales hypothesis.

The 2-adic sub-hierarchy na = 2k11, k = 0, 1, 2... is especially interesting.
For nb = 1 k = 11 would correspond to the time scale T121 = T (127)/64,
T127(2) = .1 s, which defines the fundamental 10 Hz biorhythm. T121 '
1.6 ms corresponds to a typical time scale for nerve pulse activity. For
this option primary resp. secondary p-adic length scales associated with an
aminoacid labelled by prime p would be Tp =

√
pT121 resp. Tp = pT121 and

could define a small-p p-adic hierarchy of time scales of neuronal activity.
Obviously, the maximal cyclic subgroup of Ga containing 2121 elements

and acting naturally as symmetries of magnetic and electric flux tube struc-
tures accompanying DNA and amino-acids cannot correspond to the group
Zn, n ≤ 124 associated with DNA and aminoacid molecules.
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6 Appendix: 4-adic realization of n → n + 32 sym-
metry, divisor code, and labelling of aminoacids
by primes are not mutually consistent

For the four-adic realization of the divisor code geometrically 18 aminoacids
would correspond to primes p < 63 whereas the integers n = 0 and n = 1
would correspond to special aminoacids. n → n + 32 symmetry means that
4-columns of the code table contain either even or odd integers depending
on whether the row is odd or even. Hence the 4-columns containing even
integers cannot contain the prime coding for the aminoacid so that the
geometric realization in which DNAs coding aminoacid contain both prime
labelling for the aminoacid and the integer characterizing the degeneracy of
the aminoacid as the number of its divisors is not possible.

One could weaken the condition by requiring that n(p) = p holds true
only when one of the coding codons is labelled by a prime. This however
leads to a further difficulty since the primes (5, 5 + 32 = 27) and (11, 11 +
32 = 43) belong to same 4-column and should code for same amino-acid.
Hence the assumption that aminoacids correspond to n = 0, 1 and 18 primes
p < 63 does not look natural. One could however consider a less ambitious
realization of the divisor code by giving up this requirement altogether and
requiring only that one of the DNAs is labelled by an integer for which the
number of divisors equals to the degeneracy of the corresponding codon.

For eukaryote code Met would naturally correspond to n = 1. For mito-
chondrial code the multiplets containg n = 0 and n = 1 DNA would contain
also second DNA. The problem is that the number of its divisors should be
n = 2 for the mitochondrial code for both Met and Ile and one end ups with
a contradiction unless one somehow loosens the rules. One could say that
the prime n = 17 determines the degeneracy of Ile for mitochondrial code
so that Met takes the rest.

The multiplet coding for a particular aminoacid would contain DNA
labelled by the prime coding for aminoacid and an integer with a number
of divisors equal to the degeneracy of the codon. For odd rows of the code
table 4-columns contain only even primes so that primes are contained in
4-columns in even rows of the table.

The code below is the best variant found hitherto. One of the integers
in 4-column is consistent with the the degeneracy of aminoacid according
to divisor code and for each aminoacid one of DNAs corresponds to the
integers consistent with the degeneracy. For Trp in case of eukaryote code
stop breaks the symmetry. 7 codes only for a singlet (Trp).
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UCC Ser AGC Ser CCC Pro CUC Leu
UCA Ser AGA Stop CCA Pro CUA Leu

(16)UCU Ser 20 AGU Ser CCU Pro CUU Leu
0 UCG Ser (4)AGG Stop 8 CCG Pro 12 CUG Leu

(49)AUC Ile 53 CAC His 57 GUC Val 61 UUC Leu
(33)AUA Ile (37)CAA Gln (41)GUA Val (45)UUA Phe
17 AUU Ile CAU His GUU Val 29 UUU Leu
1 AUG Met 5 CAG Gln (9)GUG Val 13 UUG Phe

CGC Arg GCC Ala ACC Thr GGC Gly
34 GGA Arg GCA Ala ACA Thr GGA Gly
18 GGU Arg GCU Ala ACU Thr GGU Gly
2 GGG Arg 6 GCG Ala 10 ACG Thr 14 GGG Gly

GAC Asp UGC Cys 59 AAC Asn 63 UAC Tyr
GAA Glu 39 UGA Trp (43)AAA Lys (47)UAA Stop

19 GAU Asp 23 UGU Cys AAU Asn (31)UAU Tyr
3 GAG Glu 7 UGG Trp 11 AAG Lys (15)UAG Stop
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