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 In the framework of six-dimensional quaternionic theory of relativity (a short review is 

given) non-inertial frames are reasonably described: uniformly accelerated observer on 

rectilinear trajectory and arbitrary accelerated observer on circular orbit. The results are used 

to derive exact Thomas precession formula and calculate change of position of Jupiter’s 

satellite observed from Earth, an integral cinematic effect for frames with variable relative 

velocity. 

 

 

 Section 1. Introduction. 

 As is shown in previous paper [1] relative motion of particles and frames can be non-

contradictorily described within framework of six-dimensional non-Abelian scheme based 

upon fundamental properties of quaternionic (Q) algebra. The key point of the scheme is Q-

multiplication rule for one “real” unit, 1, and three “imaginary” units 
kq  (k = 1,2,3) 

             
kkk qqq == 11 , nkjnkjjk qqq εδ +−= 1        (1) 

where kjδ  and kjnε  are Kroneker and Levi-Civita symbols, summation rule is valid. The non-

Abelian units 
kq  geometrically can be treated as unit vectors of an orthonormal triad. Such a 

triad admits ordinary R-rotations with real parameters ξΦ  (e.g. the angles of subsequent 

rotations α=Φ1 , β=Φ2 , γ=Φ3 ): ),3()( RSOR ∈Φξ . In this case any real Q-vector 

kka qa ≡  is a SO(3,R)-invariant 
kkkk aa ′= qq ©

 with jjkk R qq )( ξΦ≡ ′′ .  

 Parameters of transformation leaving the multiplication rule (1) intact can be complex, 

and in particular pure imaginary: ξξ Ψ→Φ i . Then real rotations convert into hyperbolic ones 

)()( ξξ Ψ→Φ HR  while the respective invariance is sought for a vector biquaternion  

kkk iba qu )( +≡ . 

The latter can be rewritten as  

kkkk ba pqu +=  

where kk iqp ≡  are three unit vectors obeying the Pauli-matrices multiplication rule. This new 

triad is rigidly attached to kq , but defines scales and directions in a three-space imaginary 

with respect to initial one. Necessary condition for the Q-vector u to be invariant under H-

rotations is the orthogonality of its vector parts 0=kkba . All such biquaternions posses real 

norm (zero included). The orthogonality condition allows representing u in the simplest form  

21 pqu ba += , 
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where a, b are lengths of the respective vectors. The complete group of transformations 

preserving u invariant is ),3()2,1( CSOSO ⊂ , the latter being the most general group of the Q-

multiplication rule (1) invariance. It means that provided one 
kq  (e.g. 1q  or 1p ) is chosen to 

perform about it R-rotations, the other two ( 2q ,
3q ) can only serve as axes of H-rotations. 

 Q-relativity arises when u-like vector  

            kkkk dxdtd qpz +=                              (2) 

is considered as specific space-time interval with kdx  being displacement and kdt  respective 

change-of-time (both vectors! 0=kk dtdx ) of a particle observed from a frame of reference 

},{ kk qp≡Σ . Fundamental velocity is taken for a unity. SO(1,2)-invariance of the “interval” 

(2) under finite R- and H-rotations (transfer from one inertial frame to another) leads to 

cinematic relations all equivalent to those of the Einstein’s Special Relativity [1].  

 A most simple constant frame Σ  is represented e.g. by Pauli-type matrices 
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The triad may be realized by a platform with three gyroscopes immobile relatively to “distant 

stars”: the observer in Σ  ”feels” no acceleration. 

 On the other hand the most general Q-frames may be functions of complex parameters 

ξξξ Ψ+Φ=Ζ : 

             jjkk O qq ′′ Ζ=Ζ )()( ξξ .                             (4) 

There is no evident obstacle for parameters of the transformation )2,1()( SOO ∈Ζξ  to be 

localized; natural is a frame’s dependence upon its proper time:  

             )]}([)],([{)( ttt kk
′Ζ′Ζ=′Σ′ ′′ ξξ qp .                             (5) 

      Q-frames of the type (5) are non-inertial ones, some of them having very complicated 

behaviour. Before considering the situation in general it seems reasonable to analyze 

relativistic motion in simple non-inertial cases.  

 In Section 2 rectilinear uniformly accelerated motion is investigated in detail. Section 3 is 

devoted to accelerated circular motion. In Section 3 classical example of Thomas precession 

is treated from quaternionic relativity viewpoint. Computation of an integral relativistic effect 

for two frames with variable relative velocity is suggested in Section 5. Discussion and 

perspectives are found in Section 6. 

 

 

 Section 2. Uniformly accelerated rectilinear motion. 

 This simplest case of accelerated observer is known as hyperbolic motion [2], [3]. The 

motion is usually treated from SR-positions but with the help of necessary additional 

assumptions (time-dependence of four-velocity, demand of Fermi-Walker transport of the 

observer’s tetrad) appropriate rather for GR. The Q-relativity approach allows treating the 

motion without loss of the theory’s logic.   

 If ′Σ  is a frame uniformly accelerated along its 2′q , then observer in ′Σ  must feel 

acceleration const=ε  as in Einstein’s elevator. This implies specific dependence of ′Σ  on its 

proper time ′t ; the dependence is found out of following considerations. 

 Let ′Σ move relatively to inertial frame Σ  (3) along its 2q . If ′Σ  is observed then the 

simplest form of interval (2) in this case is  

               211 qppz drdttdd +=′≡′ ′ ,                             (6) 

what is equivalent to the H-rotation 

qq ψ
3H=′ , 



or in explicit form 
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with  

               
dt

dr
art tanh)( =′ψ .                             (8) 

      Analogously to what was done in [1] for Newtonian non-inertial motion one may compute 

cinematic Q-vectors of ′Σ : its proper Q-velocity: 

             1′=
′
′

≡′ p
z

v
td

d
                             (9) 

naturally containing the only unit time-like component, and Q-acceleration: 

              
td

d

td

d

′
=

′
′

≡′ ′1pv
a .                           (10) 

 Computation of Q-acceleration (10) involves notion of quaternionic connection [1, 4]. For 

a triad obtained from a constant one as in Eq.(4) the derivative of k′q  in the group space is 

expressed through coefficients of antisymmetric connection knnk ′′′′ −= ξξ ωω : 

              nnk
k

d

d
′′′

′ =
Ζ

q
q

ξ
ξ

ω .                           (11) 

From Eqs.(11), (4) the connection components are found as  

              mn
mk

nk O
d

dO
′

′
′′ Ζ

=
ξ

ξω .                           (12) 

If group parameters depend on observer’s time then the time derivative is defined 

               nnknnk
k

dt

d

dt

d
′′′′′′

′ ≡
Ζ

= qq
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ωωξ
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                           (13) 

with 

               nknk
dt

d
′′′′

Ζ
≡ ξ

ξ ωω .                           (14) 

 Using Eqs.(12), (14) and (7) computation of the Q-acceleration (10) is straightforward 

               2331221
1

′′′′′′′
′

′
=+=

′
=′ qqq

q
a

td

d
ii

td

d
i

ψ
ωω .                           (15) 

Eq.(15) states that the only component of ′a  is the acceleration of ′Σ  “felt” by its own 

observer, hence 

ε
ψ

=
′td

d
, 

or 

                t′= εψ ,                           (16) 

                00 ==′tψ . 

 Now general cinematic problem (i.e. functions of time, coordinate, velocity and 

acceleration of the Q-frames) is easily solved. 

 

Case (a). Frame ′Σ is observed; interval d ′z  has the form (6) therefore  

)cosh( ttddt ′′= ε . 

After integration one obtains time-correlation equations (integration constant is assumed zero) 

)sinh(
1

tt ′= ε
ε

 



or 

             ])(1ln[
1

)sinh(
1 2

tttart εε
ε

ε
ε

++==′ .                           (17)

      

Velocity dependence on t is found from )tanh( tv ′= ε  with t substituted by t′  from (17) 

             
2
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)]sinh(tanh[)(

t

t
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ε
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+
== .                           (18) 

Integration of (18) yields the Σ′ -motion law 

              
ε

ε
ε

1
)(1

1
)( 2 −+= ttr ,                           (19) 

(integration constant is ε/1− ), while differentiation of (18) with respect to t gives 

acceleration of Σ′  seen from Σ  

              
2/32 ])(1[

)(
t

ta
ε
ε

+
= .                           (20) 

Cinematic problem is solved; the results precisely repeat those of [2,3]. For small t: tt →′ , 

constta =→ ε)( , ttv ε→)(  and 2/)( 2
ttr ε→  as it must be for non-relativistic uniformly 

accelerated motion. If ∞→t  then ∞→→′ )2ln(
1

tt ε
ε

, 032 →→ −−
ta ε , 1→v  and 

∞→→ tr  as is natural from SR viewpoint. 

 

 Case (b). Frame Σ  is observed; the interval takes the form 

              121 pqpz dtrdtdd =′−′≡ ′′                            (21) 

where rd ′−  is apparent displacement of the origin of Σ  in a time dt ′  measured in ′Σ . H-

rotation parameter is given by Eq.(16), inertial Σ -observer obviously feels no acceleration 

0=
′

≡
dt

dz
a . 

The cinematic problem is solved analogously 

             
)cosh( t

td
dt

′
′

=
ε

,                           (22) 
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)( tttt ′≡′=′ ε
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             )tanh()( ttv ′=′′ ε ,                           (24) 

             )]ln[cosh(
1

)( ttr ′=′′ ε
ε

,                           (25) 
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2

t
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′
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.                           (26) 

Behaviour of the quantities in characteristic points of time-ray is the following. If 0→′t  then 

tt ′→ , constta =→′′ ε)( , tv ′→′ ε  and 2/)( 2
ttr ′→′′ ε  as is normal for non-relativistic 

uniformly accelerated motion. If ∞→′t  then 02 2 →→′ ′− t
ea

εε , 1→′v , ∞→′→′ tr  which 

agrees with notions of SR. Asymptotic behaviour of time is specific. Eq.(23) implies that 

observer in ′Σ  finds the clock of Σ  more and more slow; at infinite time ′ → ∞t  the Σ -

clock tends to stop on the value 
ε

π
2

c
 (c is the fundamental velocity). 

 An important feature of time measurement must be emphasized here. The matter is that 

Eqs.(17-20) and (23-26) give such values of cinematic quantities as if frames ′Σ and Σ  



exchange information instantly. Actually in vacuum the signal travels with velocity 1=c , so 

the information about physical status of the object reaches distant observer at a later time.  

 In the case (a) this time is 

            )(trttr += .                           (27) 

Substitution of Eq.(19) into (27) allows to express t as function of t r
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Now instant time t can be replaced in Eqs. (17-20) by retarded time t r
 that the observer reads 

from his clock. Thus recalculated velocity of ′Σ  is 
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Closely to zero and asymptotically t and rt  are similar: if 0→t , then 0→→ ttr ; if t → ∞ , 

then ∞→→ ttr 2 . 

 In the case (b) the retarded time is 

              )(trttr
′′+′=′ .                           (30) 

Time-recalculation formula follows from Eqs.(25) and (30) 

              )12ln(
2

1
−=′ ′rtet

ε

ε
.                           (31) 

Eq.(31) helps to introduce time rt′  into Eqs.(23-26); e.g. “observed” velocity of Σ  for ′Σ  

clock is 

              
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 −=′′ ′
)12ln(

2

1
tanh)( rt

r etv
ε

.                           (32) 

For 0→′t , ∞→′t  behaviour of t′  and rt′  is similar. 

 The retarded time problem within framework of non-inertial relativity is much wider. It 

comprises experimental aspects: since position and velocity of an object are really measured 

in retarded time, there might be a need for knowledge of “instant” values. Establishing of 

mathematical ties between retarded quantities also will be helpful to see the whole picture on 

the base of available data. Detailed analysis of these aspects will be given in a separate paper. 

 

 

 Section 3. Circular motion. 

 The simplest curvilinear accelerated motion is circular motion. In the Q-relativity 

framework it needs at least two types of group parameters: a real (rotational) one and an 

imaginary (hyperbolic) one. 

 Let the origin of Σ  lie in the centre and vectors 2q , 3q  in the plane of circular orbit (with 

radius R) of the frame ′Σ  (Fig.1). There are two steps in building cinematic relativistic model.  

 The first step is non-relativistic construction of the object’s displacement. In the base Σ  

the coordinates of ′Σ  are 

             )(cos2 tRx α= , )(sin3 tRx α= , 03 =x . 

Make one of the triad vectors, say the third, be always parallel to the ′Σ  velocity 

323
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jj
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&&

&
; 

this as a part of the simple R-rotation 
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α , 

or in explicate form 
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From non-relativistic viewpoint interpretation of Σ  is two-folded. On one hand it can be 

treated as a frame rotating in the orbit’s centre with angular velocity αω &≡)(t ; its 
2

q  is 

constantly chasing the origin of the frame on orbit. On the other hand Σ  represents a frame 

revolving on the orbit with speed v R= ω  its displacement being Rdtdr ω= .  

 

 

 The second step is to “switch” relativity, i.e. to “H-rotate” Σ  at “angle” )tanh( Rar ωψ =  

about 
2

q , so that change-of-time vector becomes aligned with 
11 qq =  not involved into 

description of space cinematic quantities  
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Altogether ′Σ  is combination of two subsequent rotations (20) and (21) subject to SO(1,2) 

symmetry 

               Σ=Σ′ αψ
12

RH .                           (35) 

Q-acceleration felt by ′Σ -observer 

331221
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d
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is found from (35) with the help of Eqs.(12, 14) 

32sinh ′′ ′
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ψ
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d
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and tangent (angular)  

td

d
a

′
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ψ
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components of the acceleration.  

 For simple cases the components are readily found. Uniform motion implies 

constRar =′′= ωψ tanh  (ω ′ , R′  are angular velocity, and the orbit’s radius for ′Σ -observer), 

therefore 0tan =a , t ′′= ωα , constRanorm =′′= ψω cosh2 . For uniformly accelerated motion 

tRar ′=′′= λωψ tanh  with const=λ , then λ=tana , )cosh()(2
tRtanorm
′′′′= λω . These are 

quite expected results.  

 Farther analysis of circular motion is made for general form of the hyperbolic parameter 

)(t ′=ψψ  that is assumed given. 

 

 Case (aa). Frame ′Σ  is observed. 

     The interval expression is read from the first row of matrix Eq.(34) for rotating (non-

inertial) base Σ , or from the first row of Eq.(35) for the inertial base Σ  

              )cossin( 321311 qqqqqqz ααωω +−+=+=′≡′ ′ dtRidtdtRidttidd .              (36) 

      Procedure of solving the cinematic problem is analogous to that of Section 2. From 

Eq.(36) it follows 

            )(cosh ttddt ′′= ψ ,                             (37) 

            ∫ ′′= )(cosh ttdt ψ ,                           (38) 

and the inverse function ′ = ′t t t( )  is possibly found. The latter is used in expression for 

angular velocity 

             )]([tanh
1

)( tt
R

t ′= ψω .                           (39) 

Eq.(38) yields Σ -time dependence of rotation angle 

             ∫= dttt )()( ωα                            (40) 

and tangent acceleration 

              
td

d

dt

td
Rta

′
==

ψ
ψ

ω
3tan

cosh

1)(
)( .                           (41) 

These are all quantities available for Σ -observer. Observer in Σ  additionally makes 

conclusion about normal part of the acceleration 
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Eqs.(38-42) represent solution of the cinematic problem. 

 An essential note must be made here. An arc segment collinear to relative velocity is 

relativistically contracted as in SR 

ψcoshlddl ′= , 

while the orbit’s radius perpendicular to velocity and not involved into transformations 

remains the same for Σ  and ′Σ  

             RR =′ .                           (43) 



Hence in the case (a) the angle measures are related as 
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The last ratio together with Eqs.(43, 37) gives unique numerical value of the frames’ angular 

velocities for respective observers 
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d
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This result agrees with the axiomatic fact that for Σ  and ′Σ  value of relative velocity (or 

hyperbolic parameter) is the same 

RRv ′′=== ωωψtanh . 

 

Case (bb). Frame Σ  is observed.  

 The interval for Σ  (and Σ ) is equivalent to the first row of matrix equation 

Σ′=Σ −
′

− ψα
21
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inverse to Eq.(35) 
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since Σ -observer is considered genuinely immobile. In this case 
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′Σ -observer is able to measure apparent cinematic quantities: velocity, angle and tangent 

acceleration 
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       Eqs.(47-50) give solution of cinematic problem in the case (bb). Reasonable behaviour of 

the quantities is readily verified for simple types of circular motion in non-relativistic and 

ultrarelativistic limits. 

 In both cases (aa) and (bb) observers receive in fact retarded signals. But contrary to 

situation for rectilinear motion, here constant time delay does not influence noticeably values 

of cinematic quantities. 

 
 
 Section 4. Thomas precession. 

 Apparent rotation of genuinely constant “spin” vector of the top relativistically revolving 

about the origin of an inertial frame (Thomas precession) is regarded in SR either when 

circular trajectory is approximated by straight line segments [5] or when Fermi-Walker 

transport of vectors is postulated [3]. Quaternionic relativity suggests a shorter and more 

consistent way (from logical viewpoint) to describe the phenomenon. 

 Let Σ  be an immobile Q-frame (3) in the centre of the circular orbit of another Q-frame, 

′′Σ  uniformly revolving about Σ . Respective observers find space vectors of their frames 



constantly oriented. Notice that ′′Σ  can be obtained from ′Σ  determined by Eq.(35) with the 

help of inverse R-rotation at appropriate angle − ′α  

            Σ=Σ ′′ ′−
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αψα
121 RHR ,                           (51) 

or in explicit form 
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Suppose that angles of rotation are calculated in terms of laboratory time t: tωα = , 

t)(Σ′=′ ωα . For the base Σ′  proper (real) period )(Σ′′T  of its retrograde (second) rotation 

measured in ′Σ  due to Eq.(47) is related to apparent period )(Σ′T  measured in Σ  as 

ψcosh)()( Σ′=Σ′′ TT . 

Then proper cyclic frequency of the rotation (measured in ′Σ ) is 

ψ
ω

ψ
ππ

ω
cosh

)(

cosh)(

2

)(

2
)(

Σ′
=

Σ′
=

Σ′′
=Σ′′

TT
, 

or, taking into account Eq.(45), 

            ψωω cosh)()( Σ=Σ′ :                           (53) 

cyclic frequency of ′Σ  second rotation “seen” from Σ  is ψcosh  times bigger than that of 

first rotation of Σ  measured in itself and needed to chase ′Σ . 

 Now compute change of the top’s spin direction seen from Σ  while in ′′Σ  being 

constantly pointed at a distant star, say, along 2 ′′q , space unit vector of ′′Σ . From Eq.(52) 

vector 2 ′′q  in projections onto unit vectors of Σ  is 

               +′+′+−=′′ 212 )sinsincoshcos(cossinsinh qqq ααψαααψi  

            3)sincoscoshcos(sin qααψαα ′−′+ .                           (54) 

Projections of 2 ′′q  onto spatial directions of Σ  allow us determining apparent precession, e.g. 

projection onto 3q  
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or after some algebra 
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      Angular velocity of the first rhs term in Eq.(56) ωωω ′−≡T  corresponds to “mostly 

noticeable” Thomas precession. Due to Eq. (53) it can be presented as 

            )cosh1( ψωω −=T ;                           (59) 

for small relative Σ - ′′Σ  velocities it takes the known form 

            2

2
vT

ω
ω −=                            (60) 

with Rv ω= . The second right-hand side term of Eq.(56) describes much “less noticeable” 

precession since its amplitude is 22
cv  less than that of the first term. For small relative 

velocities the second term is t
v

ω2sin
4

2

− .  

 It is worth to note that results given by Eqs.(55, 56) precisely coincide with those found in 

[3]. The only difference is that due to SO(1,2)-symmetry preserving choice of R- and H-

rotation axes no time-like components of spin ever appear. 

 

 

 



 Section 5. Jupiter’s satellite. 

 Presented relativistic treatment of circular motion suggests the following observational 

experiment aimed to control consistence of the theory. Consider a part of Solar system (Fig.2) 

where 
~Σ  is constant Q-frame with Sun as reference body, ′Σ  is attached to Earth, and Σ  

belongs to Jupiter. In non-relativistic limit relative Jupiter-Earth velocity is 

            )cos(2222 βα −−+= JEJE vvvvV                            (61) 

with constant orbit velocities of the planets 

EEE Rv ω= , 
JJJ Rv ω=  

and respective radius angles measured from 
1
~q  linearly depending on 

~Σ  time 

             tE

~ωα = ,  tJ

~ωβ = . 

       Picture of a satellite revolving about Jupiter and observed from Earth is similar of that 

regarded in Section 3. The only difference is that both object Σ  and observer ′Σ  are non-

inertial, their relative speed variable, and this is the crucial point. If the Earth’s observer in a 

short period of time measures the satellite angular velocity )(Σ′ω  and neglects influence of 

relative Earth-Jupiter motion then in time ′t  he computes the rotation angle as 

ttheor
′Σ′= )(ωϕ . 

In fact, according to Eq.(53), the apparent angular velocity is 

ψωω cosh)( =Σ′ , 

where ω ω( )Σ ≡  is genuine constant quantity measured on Jupiter. Since velocity of relative 

motion is variable, ω ( )′Σ  is variable too. Hence the rotation angle really observed from ′Σ  is 

found as 

∫∫ ′′=′Σ′= tdttdreal )(cosh)( ψωωϕ . 

       Difference between computed and observed values of the angle is 

            ∫ ′′−′=−≡∆ ])(cosh)([cosh 0 tdtttheorreal ψψωϕϕϕ .                           (63) 

Ratio V c  is small, so non-relativistic value of relative velocity (61) is sufficient 
2

)(

2

1
1cosh 




 ′
+≈

c

tV
ψ . 

 
 



 

       If at the moment of initial measurement ′t0  velocities of Earth and Jupiter are parallel 

)( 0tvE
′

r
↑↑ )( 0tvE

′
r

, then computed value of apparent angular velocity is minimal and Eq.(63) 

takes the form 

              t
c

vv JE ′








−
−

−≈∆
βα

βαω
ϕ

)sin(
1

2
.                           (64) 

The second term in brackets tends to zero with time so that final formula is 

               t
c

vv JE ′≈∆
2

ω
ϕ .                           (65) 

For the closest Jupiter satellite (“Metes”) sec105.2 4−⋅=ω , sec4.30 kmvE = , 

sec1.31 kmvJ =  in one Jupiter year sec107.312 8⋅==′ yearsEartht  the angle difference 

4.11014.4 4 ′=⋅=∆ −
radϕ  might be observable. 

 

 

 Section 6. Discussion. 

 Examples given in paper [1] and above show that quaternionic approach to relativistic 

kinematics seems to provide consistent description of inertial and non-inertial frames of 

reference. In the framework of the theory all cinematic effects of Einstein’s Special Relativity 

are found as well as hyperbolic motion and Thomas precession, effects whose standard 

descriptions demand additional assumptions. The suggested relativistic scheme due to 

vectorial character of its space-time “interval” is obviously convenient to consider frames with 

curvilinear trajectories. In particular it permits to obtain plausible results of relativistic circular 

motion of general type and predict integral effects for frames with variable relative speed. 

 Nevertheless several examples whatever successful they were represent only separate 

pieces of unique theory. Kinematics of quaternionic relativity is not completed until the most 

general types of frames trajectories are taken into account. This is the task of next paper. 
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