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1 Introduction

In [G2] a semiclassical model based on dark matter and hierarchy of Planck
constants is developed for the fractionized principal quantum number n
claimed by Mills [1] to have at least the values n = 1/k, k = 2, 3, 4, 5, 6, 7, 10.
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This model could explain the claimed fractionization of the principal quan-
tum number n for hydrogen atom [1] in terms of single electron transitions
for all cases except n = 1/2: the basis reason is that Jones inclusions are
characterized by quantum phases q = exp(iπ/n), n > 2. Since quantum
deformation of the standard quantum mechanism is involved, this motivates
an attempt to understand the claimed fractionization in terms of q-analog
of hydrogen atom.

The Laguerre polynomials appearing in the solution of Schrödinger equa-
tion for hydrogen atom possess quantum variant, so called q-Laguerre poly-
nomials [2], and one might hope that they would allow to realize this semi-
classical picture at the level of solutions of appropriately modified Schrödinger
equation and perhaps also resolve the difficulty associated with n = 1/2. Un-
fortunately, the polynomials discussed in [2] correspond to 0 < q ≤ 1 rather
than complex values of q = exp(iπ/m) on circle and the extrapolation of the
formulas for energy eigenvalues gives complex energies. It is however easy
to modify the definition of q-derivative and it turns out that it is possible to
reproduce n = 1/2 state exactly and n = 1/m, m > 2 states in a reasonable
approximation as solutions of q-Laquerre equation for s-wave states. Also
the generalization to associated q-Laquerre equation is straightforward.

2 Could q-Laguerre equation explain the claimed
fractionation of the principal quantum number
for hydrogen atom?

In [G2] a semiclassical model based on dark matter and hierarchy of Planck
constants is developed for the fractionized principal quantum number n
claimed by Mills [1] to have at least the values n = 1/k, k = 2, 3, 4, 5, 6, 7, 10.
This model can explain the claimed fractionization of the principal quantum
number n for hydrogen atom [1] in terms of single electron transitions for all
cases. The original model could not cope with n = 1/2: the basic reason is
that Jones inclusions are characterized by quantum phases q = exp(iπ/n),
n > 2. Since quantum deformation of the standard quantum mechanism is
involved, this motivated an attempt to understand the claimed fractioniza-
tion in terms of q-analog of hydrogen atom. The safest interpretation for
them would be as states which can exist in ordinary imbedding space (and
also in other branches). The natural guess would be that they can occur as
intermediate states in the phase transition changing nb/na = 1 to k = 2, 3, ...

The Laguerre polynomials appearing in the solution of Schrödinger equa-
tion for hydrogen atom possess quantum variant, so called q-Laguerre poly-
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nomials [2], and one might hope that they would allow to realize this semi-
classical picture at the level of solutions of appropriately modified Schrödinger
equation and perhaps also resolve the difficulty associated with n = 1/2. Un-
fortunately, the polynomials discussed in [2] correspond to 0 < q ≤ 1 rather
than complex values of q = exp(iπ/m) on circle and the extrapolation of
the formulas for energy eigenvalues gives complex energies.

2.1 q-Laquerre equation for q = exp(iπ/m)

The most obvious modification of the Laguerre equation for S-wave sates
(which are the most interesting by semiclassical argument) in the complex
case is based on the replacement

∂x → 1
2
(∂q)

x + ∂q)
x )

∂q)
x f =

f(qx)− f(x)
(q − 1)x

,

q = exp(iπ/m) (1)

to guarantee hermiticity. When applied to the Laguerre equation

x
d2Ln

dx2
+ (1− x)

dLn

dx
= nLn , (2)

and expanding Ln into Taylor series

Ln(x) =
∑
n≥0

lnxn , (3)

one obtains difference equation

an+1ln+1 + bnln = 0 ,

an+1 =
1

4R2
1

[R2n+1 −R2n + 2Rn+1R1 + 3R1)] +
1

2R1
[Rn+1 + R1]

bn =
Rn

2R1
− nq) +

1
2

,

Rn = 2cos [(n− 1)π/m]− 2cos [nπ/m] . (4)

Here nq) is the fractionized principal quantum number determining the en-
ergy of the q-hydrogen atom. One cannot pose the difference equation on
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l0 since this together with the absence of negative powers of x would imply
the vanishing of the entire solution. This is natural since for first order
difference equations lowest term in the series should be chosen freely.

2.2 Polynomial solutions of q-Laquerre equation

The condition that the solution reduces to a polynomial reads as

bn = 0 (5)

and gives

nq) =
1
2

+
Rn

2R1
, (6)

For n = 1 one has nq) = 1 so that the ground state energy is not affected.
At the limit N →∞ one obtains nq) → n so that spectrum reduces to that
for hydrogen atom. The periodicity Rn+2Nk = Rn reflects the corresponding
periodicity of the difference equation which suggests that only the values n ≤
2m−1 belong to the spectrum. Spectrum is actually symmetric with respect
to the middle point [N/2] which suggests that only n < [m/2] corresponds to
the physical spectrum. An analogous phenomenon occurs for representations
of quantum groups. When m increases the spectrum approaches integer
valued spectrum and one has n > 1 so that no fractionization in the desired
sense occurs for polynomial solutions.

2.3 Non-polynomial solutions of q-Laquerre equation

One might hope that non-polynomial solutions associated with some frac-
tional values of nq) near to those claimed by Mills might be possible. Since
the coefficients an and bn are periodic, one can express the solution ansatz
as

Ln(x) = P 2m)
a (x)

∑
k

akx2mk = P 2m)
a (x)

1
1− ax2m

,

P 2m)
a (x) =

2m−1∑
k=0

lkx
k ,

a =
l2m

l0
, (7)
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This solution behaves as 1/x asymptotically but has pole at x∞ = (1/a)1/2m

for a > 0.
The expression for l2m/l0 = a is

a =
2m∏
k=1

b2m−k

a2m−k+1
. (8)

This can be written more explicitly as

a = (2R1)2m
2m∏
k=1

Xk ,

Xk =
R2m−k + (−2nq) + 1)R1

R4m−2k+1 −R4m−2k + 4R2m−k+1R1 + 2R2
1 + 3R1

,

Rn = 2cos [(n− 1)π/m]− 2cos [nπ/m] . (9)

This formula is a specialization of a more general formula for n = 2m

and resulting ratios ln/l0 can be used to construct P
2m)
a with normaliza-

tion P
2m)
a (0) = 1.

2.4 Results of numerical calculations

Numerical calculations demonstrate following.
a) For odd values of m one has a < 0 so that a a continuous spectrum

of energies seems to result without any further conditions.
b) For even values of m a has a positive sign so that a pole results.
For even value of m it could happen that the polynomial P

2m)
a (x) has

a compensating zero at x∞ so that the solution would become square inte-
grable. The condition for reads explicitly

P 2m)
a

(
(
1
a
)

1
2m

)
= 0 . (10)

If P
2m)
a (x) has zeros there are hopes of finding energy eigen values satis-

fying the required conditions. Laguerre polynomials and also q-Laguerre
polynomials must posses maximal number of real zeros by their orthogo-
nality implied by the hermiticity of the difference equation defining them.
This suggests that also P

2m)
a (x) possesses them if a does not deviate too

5



much from zero. Numerical calculations demonstrate that this is the case
for nq) < 1.

For ordinary Laguerre polynomials the naive estimate for the position of
the most distant zero in the units used is larger than n but not too much
so. The naive expectation is that L2m has largest zero somewhat above
x = 2m and that same holds true a small deformation of L2m considered
now since the value of the parameter a is indeed very small for nq) < 1. The
ratio x∞/2m is below .2 for m ≤ 10 so that this argument gives good hopes
about zeros of desired kind.

One can check directly whether x∞ is near to zero for the experimentally
suggested candidates for nq). The table below summarizes the results of
numerical calculations.

a) The table gives the exact eigenvalues 1/nq) with a 4-decimal accuracy

and corresponding approximations 1/n
q)
' = k for k = 3, ..., 10. For a given

value of m only single eigenvalue nq) < 1 exists. If the observed anomalous
spectral lines correspond to single electron transitions, the values of m for
them must be different. The value of m for which nq) ' 1/k approximation
is optimal is given with boldface. The value of k increases as m increases.
The lowest value of m allowing the desired kind of zero of P 2m) is m = 18
and for k ∈ {3, 10} the allowed values are in range 18, .., 38.

b) nq) = 1/2 does not appear as an approximate eigenvalue so that for
even values of m quantum calculation produces same disappointing result
as the classical argument. Below it will be however found that nq) = 1/2 is
a universal eigenvalue for odd values of m.

m 1/n
q)
' 1/nq) m 1/n

q)
' 1/nq)

18 3 2.7568 30 8 7.5762
20 4 3.6748 32 8 8.3086
22 5 4.5103 34 9 9.0342
24 5 5.3062 36 10 9.7529
26 6 6.0781 38 10 10.4668
28 7 6.8330

Table 1. The table gives the approximations 1/nq)' = 1/k and corre-
sponding exact values 1/nq) in the range k = 3, ..., 10 for which P

2m)
a (x∞)

is nearest to zero. The corresponding values of m = 2k vary in the range,
k = 18, ..., 38. For odd values of m the value of the parameter a is nega-
tive so that there is no pole. Boldface marks for the best approximation by
1/n

q)
' = k.
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2.5 How to obtain nq) = 1/2 state?

For odd values of m the quantization recipe fails and physical intuition tells
that there must be some manner to carry out quantization also now. The
following observations give a hunch about be the desired condition.

a) For the representations of quantum groups only the first m spins are
realized. This suggests that there should exist a symmetry relating the
coefficients ln and ln+m and implying nq) = 1/2 for odd values of m. This
symmetry would remove also the double degeneracy associated with the
almost integer eigenvalues of nq). Also other fractional states are expected
on basis of physical intuition.

b) For nq) = 1/2 the recursion formula for the coefficients ln involves
only the coefficients Rm.

c) The coefficients Rk have symmetries Rk = Rk+2m and Rk+m = −Rm.
There is indeed this kind of symmetry. From the formula

ln
l0

= (2R1)n
n∏

k=1

Xk ,

Xk =
Rn−k + (−2nq) + 1)R1

[R2n−2k+1 −Rn−2k + 4Rn−k+1R1 + 2R2
1 + 3R1

(11)

one finds that for nq) = 1/2 the formula giving ln+m in terms of ln changes
sign when n increases by one unit

An+1 = (−1)mAn ,

An =
m∏

k=1

bn+m−k

an+m−k+1
=

m∏
k=1

(2R1)m
m∏

k=1

Xk+n .

(12)

The change of sign is essentially due to the symmetries an+m = −an and
bn+m = bn. This means that the action of translations on An in the space
of indices n are represented by group Z2.

This symmetry implies a = l2m/l0 = −(lm)(l0)2 so that for nq) = 1/2
the polynomial in question has a special form

P 2m)
a = Pm)

a (1−Axm) ,

A = A0 . (13)
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The relationship a = −A2 implies that the solution reduces to a form con-
taining the product of mth (rather than (2m)th) order polynomial with a
geometric series in xm (rather than x2m):

L1/2(x) =
P

m)
a (x)

1 + Axm
. (14)

Hence the n first terms indeed determine the solution completely. For even
values of m one obtains similar result for nq) = 1/2 but now A is negative so
that the solution is excluded. This result also motivates the hypothesis that
for the counterparts of ordinary solutions of Laguerre equation sum (even
m) or difference (odd m) of solutions corresponding to n and 2m− n must
be formed to remove the non-physical degeneracy.

This argument does not exclude the possibility that there are also other
fractional values of n allowing this kind of symmetry. The condition for
symmetry would read as

m∏
k=1

(Rk + εR1) =
m∏

k=1

(Rk − εR1) ,

ε = (2nq) − 1 . (15)

The condition states that the odd part of the polynomial in question van-
ishes. Both ε and −ε solutions so that nq) and 1− nq) are solutions. If one
requires that the condition holds true for all values of m then the compar-
ison of constant terms in these polynomials allows to conclude that ε = 0
is the only universal solution. Since ε is free parameter, it is clear that the
m:th order polynomial in question has at most m solutions which could cor-
respond to other fractionized eigenvalues expected to be present on basis of
physical intuition.

This picture generalizes also to the case of even n so that also now
solutions of the form of Eq. 14 are possible. In this case the condition is

m∏
k=1

(Rk + εR1) = −
m∏

k=1

(Rk − εR1) . (16)

Obviously ε = 0 and thus n = 1/2 fails to be a solution to the eigenvalue
equation in this case. Also now one has the spectral symmetry n± = 1/2±ε.

The symmetry Rn = (−1)mRn+m−1 = (−1)mRn−m−1 = (−1)mRm−n+1

can be applied to show that the polynomials associated with ε and−ε contain
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both the terms Rn − ε and Rn + ε as factors except for odd m for n =
(m + 1)/2. Hence the values of n can be written for even values of m as

nq)(n) =
1
2
± Rn

2R1
, n = 1, ...,

m

2
, (17)

and for odd values of m as

n
q)
± (n) =

1
2
± Rn

2R1
, n = 1, ...,

m + 1
2

− 1 ,

nq) = 1/2 . (18)

Plus sign obviously corresponds to the solutions which reduce to polynomials
and to nq) ' n for large m. The explicit expression for nq) reads as

n
q)
± (n) =

1
2
± (sin2(π(n− 1)/2m)− sin2(πn/2m))

2sin2(π/2m)
. (19)

At the limit of large m one has

n
q)
+ (n) ' n , n

q)
− (n) ' 1− n . (20)

so that the fractionization n ' 1/k claimed by Mills is not obtained at
this limit. The minimum for |nq)| satisfies |nq)| < 1 and its smallest value
|nq)| = .7071 corresponds to m = 4. Thus these zeros cannot correspond to
nq) ' 1/k yielded by the numerical computation for even values of m based
on the requirement that the zero of P 2m) cancels the pole of the geometric
series.

2.6 Some comments

Some closing comments are in order.
a) An open question is whether there are also zeros |nq)| > 1 satisfying

P
2m)
a ((1/a)1/2m) = 0 for even values of m.

b) The treatment above is not completely general since only s-waves
are discussed. The generalization is however a rather trivial replacement
(1 − x)d/dx → (l + 1 − x)d/dx in the Laguerre equation to get associated
Laguerre equation. This modifies only the formula for an+1 in the recursion
for ln so that expression for nq), which depends on bn:s only, is not affected.
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Also the product of numerators in the formula for the parameter a = l2m/l0
remains invariant so that the general spectrum has the spectral symmetry
nq) → 1−nq). The only change to the spectrum occurs for even values of m
and is due to the dependence of x∞ = (1/a)1/2m on l and can be understood
in the semiclassical picture. It might happen that the value of l is modified
to its q counterpart corresponding to q-Legendre functions.

c) The model could partially explain the findings of Mills and nq) ' 1/k
for k > 2 also fixes the value of corresponding m to a very high degree so
that one would have direct experimental contact with generalized imbed-
ding space, spectrum of Planck constants, and dark matter. The fact that
the fractionization is only approximately correct suggests that the states
in question could be possible for all sectors of imbedding space appear as
intermediate states into sectors in which the spectrum of hydrogen atom is
scaled by nb/na = k = 2, 3, .....

d) The obvious question is whether q-counterparts of angular momentum
eigenstates (idfm/dφ = mfm) are needed and whether they make sense. The
basic idea of construction is that the phase transition changing h̄ does not
involve any other modifications except fractionization of angular momentum
eigenvalues and momentum eigenvalues having purely geometric origin. One
can however ask whether it is possible to identify q-plane waves as ordinary
plane waves. Using the definition Lz = 1/2(∂q

u + ∂q
u), u = exp(iφ), one

obtains fn = exp(inφ) and eigenvalues as nq) = Rn/R1 → n for m → ∞.
Similar construction applies in the case of momentum components.

3 An explanation in terms of quantized Planck
constant

The recent view about quantization of Planck constants allows to under-
stand the findings of Mills elegantly. The solutions of q-Laguerre equation
could represent in this framework intermediate states facilitating the phase
transition changing Planck constants without large change in the binding
energy.

3.1 Quantization of Planck constants and the generalization
of the notion of imbedding space

The recent geometric interpretation for the quantization of Planck constants
is based on Jones inclusions of hyper-finite factors of type II1 [C8].

a) Different values of Planck constant correspond to imbedding space
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metrics involving scalings of M4 resp. CP2 parts of the metric deduced
from the requirement that distances scale as h̄(M4) resp. h̄(M4). De-
noting the Planck constants by h̄(M4) = nah̄0 and h̄(CP2) = nbh̄0, one
has that covariant metric of M4 is proportional to n2

b and covariant met-
ric of CP2 to n2

a. In Kähler action only the effective Planck constant
h̄eff/h̄0 = h̄(M4)/h̄(CP2) appears and by quantum classical correspondence
same is true for Schödinger equation. Elementary particle mass spectrum
is also invariant. Same applies to gravitational constant. The alternative
assumption that M4 Planck constant is proportional to nb would imply
invariance of Schrödinger equation but would not allow to explain Bohr
quantization of planetary orbits and would to certain degree trivialize the
theory (to be honest I believed to this option for some time and it produced
a lot of confusion).

b) M4 and CP2 Planck constants do not fully characterize a given sec-
tor M4

± × CP2. Rather, the scaling factors of Planck constant given by the
integer n characterizing the quantum phase q = exp(iπ/n) corresponds to
the order of the maximal cyclic subgroup for the group G ⊂ SU(2) char-
acterizing the Jones inclusion N ⊂ M of hyper-finite factors realized as
subalgebras of the Clifford algebra of the ”world of the classical worlds”.
This means that subfactor N gives rise to G-invariant configuration space
spinors having interpretation as G-invariant fermionic states.

c) Gb ⊂ SU(2) ⊂ SU(3) defines a covering of M4
+ by CP2 points and

Ga ⊂ SU(2) ⊂ SL(2, C) covering of CP2 by M4
+ points with fixed points

defining orbifold singularities. Different sectors are glued together along
CP2 if Gb is same for them and along M4

+ if Ga is same for them. The
degrees of freedom lost by G-invariance in fermionic degrees of freedom are
gained back since the discrete degrees of freedom provided by covering allow
many-particle states formed from single particle states realized in G group
algebra. Among other things these many-particle states make possible the
notion of N-atom.

d) Phases with different values of scalings of M4 and CP2 Planck con-
stants behave like dark matter with respect to each other in the sense that
they do not have direct interactions except at criticality corresponding to a
leakage between different sectors of imbedding space glued together along
M4 or CP2 factors. In large h̄(M4) phases various quantum time and length
scales are scaled up which means macroscopic and macro-temporal quan-
tum coherence. In particular, quantum energies associated with classical
frequencies are scaled up by a factor na/nb which is of special relevance
for cyclotron energies and phonon energies (superconductivity). For large
h̄(CP2) the value of h̄eff is small: this leads to interesting physics: in par-

11



ticular the binding energy scale of hydrogen atom increases by the factor
nb/n2

a.

3.2 Quantization of Planck constant as an explanation for
the findings of Mills

Also the small values of h̄eff ) = na/nb are interesting since in this case
hydrogen atom binding energy scale increases by factor (nb/na)2 as Planck
constant decreases (this conforms with the interpretation about approach
to chaos in systems like plasmas). The assumption nb/na = k = 2, 3, ...
predicts exactly the binding energies reported of Mills. Also the fact that
for nb/na > 137 the binding energy becomes larger than electron rest mass
remaining invariant in the phase transition implies trivially the upper bound
k ≤ 137.

More generally, this picture leads to the notion of N-atom. The space-
time sheets can be regarded as N(Gb)-fold coverings of M4 by CP2 points
related by subgroup Gb ⊂ SU(2) ⊂ SU(3) (color group) and this meas that
one can put one hydrogen atom to each sheet of the covering (analogous to
multi-sheeted Riemann surface. The signature for N-atom would be scaled
up binding energy spectrum whereas vibrational energies would be scaled
downwards.

Another kind of N-atom results for na/nb > 1. This N-atom would be like
N-molecule having discrete spatial symmetry characterized by Ga ⊂ SO(3):
for large values of na the symmetry would consist of planar rotations and
reflections with number-theoretically preferred values of na corresponding
to Fermat polygons constructible using only ruler and compass. The only
genuinely 3-D symmetry groups would correspond to tedrahedral and icosa-
hedral symmetries which are encountered in the structure of water. Icosahe-
dral and dual dodecahedral structures are very abundant in living matter.

In this case energies hf associated with classical frequencies are scaled
up by factor na/nb > 1 so that the vibrational modes need not be masked
by the thermal noise. Note that also the quantum energies associated with
cyclotron and plasma frequency are scaled up. For na/nb = n integer,
one can ask whether the vibrational dark photons emitted by dark atoms
could decay to n ordinary photons having ordinary vibrational energy. The
signature would be the appearance of a compound such as water in places
where it is not thermally stable.
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